Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
AE=AD
AF=AD
Do đó: AE=AF
b: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
Hãy tích cho tui đi
Nếu bạn tích tui
Tui không tích lại đâu
THANKS
Bài 1:
a: Ta có: D và E đối xứng nhau qua AB
nên AD=AE
=>ΔADE cân tại A
mà AB là đường cao
nên AB là phân giác của góc EAD(1)
Ta có: D và F đối xứng nhau qua AC
nên AD=AF
=>ΔADF cân tại A
=>AC là phân giác của góc DAF(2)
Từ (1) và (2) suy ra góc EAF=2xgóc BAC=120 độ
AE=AD
AF=AD
Do đó: AE=AF
b: Xét ΔADM và ΔAEM có
AD=AE
góc DAM=góc EAM
AM chung
DO đó: ΔADM=ΔAEM
SUy ra: góc ADM=góc AEM(3)
Xét ΔADN và ΔAFN có
AD=AF
góc DAN=góc FAN
AN chung
Do đó; ΔADN=ΔAFN
Suy ra: góc ADN=góc AFN(4)
Từ (3) và (4) suy ra góc ADM=góc ADN
hay DA là phân giác của góc MDN
Với đề bài cho như bạn viết thì câu a thì chứng minh đúng được. Còn câu b thì IF không thể là phân giác của góc BCI được. Câu c là F không thể đối xứng được D qua CI (hình vẽ minh hoạ, luôn tồn tại điểm K trên BC khác điển F)
A B C D E F I 1 2 3 4
a) xét tg BEF có: BD là pg của ^B (gt) và EF vg vs BD (gt)
=> tg BEF cân tại B=> BD cx là đg trung trực ứng vs cạnh EF => E đx vs F qua BD
b)ta có: ^ BAC +^ ABC +^ACB=180( t/c tổng các goác trong tg)
=>60+ 2 ^IBC +2.^ICB=180 (vì ^ BAC=60 )
=> ^IBC+^ICB=60
xét tg IBC có: ^BIC +^ICB +^IBC =180 (t/c tổng các góc trong tg)
=> ^BIC= 120 (vì ^IBC +^ICB =60)
Mà ^BIC +\(^{\widehat{I}_1}\)=180 (vì 2 góc này bù nhau) =>\(^{\widehat{I}_1}\) =60 (vì ^BIC=120)
^BIC +\(\widehat{I_4}\)=180(vì.........................)=>\(\widehat{I_4}\)=60
=> \(^{\widehat{I}_1}\)= \(\widehat{I_2}\)=60 (vì 2 góc này đối xứng vs nhau)
và \(\widehat{I_4}\) = \(\widehat{I_3}\)=60(vì ...................................)
=>\(\widehat{I_2}\) =\(\widehat{I_3}\) =60 => IF là tia pg của ^BIC
c)xét tg IDC và tg IFC có: \(\widehat{I_4}\)= \(\widehat{I_3}\) (=60) ; IC chung ; ^DCI=^FCI (vì IC là pg của ^C)
=>tg IDC =tg IFC (g.c.g)
=> ID=IF và DC=FC => IC là đg trung trực của DF => D đx vs F qua IC