K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

ΔBDC nội tiếp

BC là đường kính

Do đó: ΔBDC vuông tại D

hay CD\(\perp\)AB

Xét (O) có

ΔBEC nội tiếp

BC là đường kính

Do đó: ΔBEC vuông tại E

hay BE\(\perp\)AC

b: Xét tứ giác BDEC có 

\(\widehat{BDC}=\widehat{BEC}=90^0\)

nên BDEC là tứ giác nội tiếp

c: Xét ΔBAC có

BE là đường cao

CD là đường cao

BE cắt CD tại K

Do đó: K là trực tâm

=>AK\(\perp\)CB

16 tháng 7 2020

A D B E K O C

a. Tam giác BCD nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại D.

Suy ra: \(CD \perp AB\)

Tam giác BCE nội tiếp trong đường tròn (O) có BC là đường kính nên vuông tại E.

Suy ra: \(BE \perp AC\)

b. K là giao điểm của hai đường cao CD và BE nên K là trực tâm của tam giác ABC

Suy ra: \(AK \perp BC\)

Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E a)CMR: CD vuông góc với AB , BE vuông góc với AC b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BCBài 3:Cho hình thang ABCD ,...
Đọc tiếp

Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó 

Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E 

a)CMR: CD vuông góc với AB , BE vuông góc với AC 

b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC

Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm 

Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn 

 

2
11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

31 tháng 10 2021

a: Xét (O) có

ΔBDC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBDC vuông tại D

Xét (O) có

ΔBEC nội tiếp đường tròn

BC là đường kính

Do đó: ΔBEC vuông tại E

28 tháng 7 2018

Mình tích rồi

23 tháng 6 2017

Sự xác định đường tròn. Tính chất đối xứng của đường tròn

29 tháng 4 2019

K là giao điểm của hai đường cao CD và BE nên K là trực tâm của tam giác ABC

Suy ra: AK ⊥ BC

a:

góc BDC=góc BEC=1/2*sđ cung BC=90 độ

=>CD vuông góc AB và BE vuông góc AC

Xét ΔABC có

CD,BE là đường cao

CD cắt BE tại H

=>H là trực tâm

=>AH vuông góc BC

b: góc AEH+góc ADH=180 độ

=>AEHD nội tiếp đường tròn đường kính AH

=>I là trung điểm của AH

c: góc BDC=góc BEC=90 độ

=>BDEC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

d: ID=IE

OD=OE

=>OI là trung trực của DE

=>OI vuông góc DE