K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2017

Bài 1:
A B C N M G H

Giải:

Gọi H là giao của AG và BC

Ta có: CN là đường trung tuyến ứng với AB

BM là đường trung tuyến ứng với AC

Mà BM = CN

\(\Rightarrow\Delta ABC\) cân tại A

Lại có 2 đường trung tuyến BM, CN cắt nhau tại G mà AH cũng cắt tại G nên từ đó AH là đường trung tuyến còn lại.

\(\Rightarrow AH\) cũng là đường cao ứng với cạnh BC

\(\Rightarrow AH\perp BC\)

hay \(AG\perp BC\)

15 tháng 4 2017

hình bạn tự vẽ nha

trên tia đối của tia AD lấy H sao cho AD=DH

tg ADB=tg HCD(c.g.c)

Xét \(\Delta ACH\)có AH<AC+CH (bất đẳng thức tam giác)

do AH=2AD nên 2AD<AC+CH

mà CH=AB nên 2AD<AB+AC (đpcm)

b)xét tg BGC có BG+GC>BC(bất đẳng thức tg)

mà BG\(=\dfrac{2}{3}BE\),\(GC=\dfrac{2}{3}CF\) nên \(\dfrac{2}{3}BE+\dfrac{2}{3}CF>BC\Rightarrow BE+CF>\dfrac{3}{2}BC\)(đpcm)

c)tương tự câu a ta có

2BE<AB+AC

2CF<BC+AC

suy ra 2(AD+BE+CF)<2(AB+AC+BC)

hay AD+BE+CF<AB+AC+BC (1)

tương tự câu b ta có CF+AD>\(\dfrac{3}{2}AC;BE+AD>\dfrac{3}{2}AD\)

cộng các vế với vế trong các bất đẳng thức trên ta có

2(AD+BE+CF)>3/2(AB+AC+BC)

\(\Leftrightarrow AD+BE+CF>\dfrac{3}{4}\left(AB+AC+BC\right)\left(2\right)\)

từ (1) và (2) ta có \(\dfrac{3}{4}\left(AB+AC+BC\right)< AD+BE+CF< AB+BC+AC\left(đpcm\right)\)


3 tháng 7 2017

A F B D G E C M

Vẽ điểm M sao cho D là trung điểm của AM

Ta chứng minh được \(\Delta ABD=\Delta MCD\) => AB = CM

Xét \(\Delta ACM\) có: AM < AC + CM hay 2AD < AC + AB hay \(AD< \frac{AB+AC}{2}\) (đpcm)

3 tháng 7 2017

cảm ơn nha bạn