Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △BEA và △BAC có :
\(\widehat{E}=\widehat{A}\left(=90^o\right)\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\)△BEA ~ △BAC (g.g)
b) +) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)
\(\Rightarrow AB^2=BE.BC\)
\(\Rightarrow BE=1,8\left(cm\right)\)
+) Áp dụng định lý Pythagoras vào △ABC, ta được :
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC^2=5^2-3^2\)
\(\Rightarrow AC^2=16\)
\(\Rightarrow AC=4\left(cm\right)\)
+) Vì △BEA ~ △BAC
\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)
\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)
c) Xét △BAI và △BEK có :
\(\widehat{A}=\widehat{E}=\left(90^o\right)\)
\(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)
\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)
\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)
\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)
d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC
\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)
Vì Vì △BEA ~ △BAC
\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)
\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)
Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [C, E] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [D, M] Đoạn thẳng s: Đoạn thẳng [M, E] Đoạn thẳng a: Đoạn thẳng [A, H] A = (-0.88, 1.82) A = (-0.88, 1.82) A = (-0.88, 1.82) C = (8.6, 1.86) C = (8.6, 1.86) C = (8.6, 1.86) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h
a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))
Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)
b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)
Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)
c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))
Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)
Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\)
d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)
Để \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)
Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)
Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)
Vi goc A=A' ;B+B'=180 do
nên => hai tam giác này đồng dạng
=>AC/A'C'=BC/B'C' (dpcm)