\(180^o\)

Chứng...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2020

a) Xét △BEA và △BAC có :

           \(\widehat{E}=\widehat{A}\left(=90^o\right)\)

           \(\widehat{B}\)là góc chung

\(\Rightarrow\)△BEA ~ △BAC (g.g)

b) +) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BC}=\frac{BE}{AB}\)

\(\Rightarrow AB^2=BE.BC\)

\(\Rightarrow BE=1,8\left(cm\right)\)

+) Áp dụng định lý Pythagoras vào △ABC, ta được :

     \(BC^2=AB^2+AC^2\)

\(\Rightarrow AC^2=5^2-3^2\)

\(\Rightarrow AC^2=16\)

\(\Rightarrow AC=4\left(cm\right)\)

+) Vì △BEA ~ △BAC

\(\Rightarrow\frac{AE}{AC}=\frac{BE}{AB}\)

\(\Rightarrow AE=\frac{AC.BE}{AB}=\frac{4\cdot1,8}{3}=2,4\left(cm\right)\)

c) Xét △BAI và △BEK có :

           \(\widehat{A}=\widehat{E}=\left(90^o\right)\)

           \(\widehat{ABI}=\widehat{IBC}\left(=\frac{1}{2}\widehat{ABC}\right)\)

\(\Rightarrow\)Vì △BAI ~ △BEK (g.g)

\(\Rightarrow\frac{EK}{AI}=\frac{BE}{BA}\)

\(\Rightarrow BE.AI=BA.EK\)(ĐPCM)

d) Vì BI là tia phân giác \(\widehat{B}\)của Vì △ABC

\(\Rightarrow\hept{\begin{cases}\frac{KA}{KE}=\frac{AB}{BE}\\\frac{IC}{IA}=\frac{BC}{AB}\end{cases}}\)

Vì Vì △BEA ~ △BAC

\(\Rightarrow\frac{AB}{BE}=\frac{BC}{AB}\)

\(\Rightarrow\frac{KA}{KE}=\frac{IC}{IA}\)(ĐPCM)

8 tháng 5 2017

Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [C, E] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [D, M] Đoạn thẳng s: Đoạn thẳng [M, E] Đoạn thẳng a: Đoạn thẳng [A, H] A = (-0.88, 1.82) A = (-0.88, 1.82) A = (-0.88, 1.82) C = (8.6, 1.86) C = (8.6, 1.86) C = (8.6, 1.86) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h

a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))

Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)

b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)

Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)

c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))

Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)

Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\) 

d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)

\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)

Để  \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)

Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)

Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)

Cho tam giác ABC vuông tại A có AB>AC, M là một điểm tùy ý trên cạnh BC . Qua điểm M, kẻ Mx vuông góc với BC . Tia Mx cắt AB tại I cắt AC tại D.a/ Chứng minh rằng tam giác ABC đồng dạng với tam giác MDCb/ Chứng minh rằng BI.BA=BM.BCc/ CI cắt BD tại K . Chứng minh BI.BA+CI.CK không phụ thuộc vào vị trí của điểm Md/ Cho \(\widehat{ACB}=60^o\), tính \(\frac{S_{CMA}}{S_{CDB}}\)Mình đã lm đc câu a vs câu c ntn:a/...
Đọc tiếp

Cho tam giác ABC vuông tại A có AB>AC, M là một điểm tùy ý trên cạnh BC . Qua điểm M, kẻ Mx vuông góc với BC . Tia Mx cắt AB tại I cắt AC tại D.

a/ Chứng minh rằng tam giác ABC đồng dạng với tam giác MDC

b/ Chứng minh rằng BI.BA=BM.BC

c/ CI cắt BD tại K . Chứng minh BI.BA+CI.CK không phụ thuộc vào vị trí của điểm M

d/ Cho \(\widehat{ACB}=60^o\), tính \(\frac{S_{CMA}}{S_{CDB}}\)

Mình đã lm đc câu a vs câu c ntn:

a/ Vì \(Mx\perp BC\)tại M (gt)

\(\Rightarrow\) \(DM\perp BC\)tại M ( \(D\in Mx\) )

\(\Rightarrow\) \(\widehat{DMC}=90^o\) ( tính chất )

\(\Rightarrow\) Tam giác MDC vuông tại M ( định nghĩa )

Xét tam giác ABC vuông tại A và tam giác MDC vuông tại M có:

\(\widehat{C}\)chung

Vậy tam giác ABC ~ tam giác MDC ( 1 góc nhọn )

 

b/ Vì \(\widehat{DMC}=90^o\) ( chứng minh trong câu a )

\(\Rightarrow\)\(\widehat{DMB}=90^o\) ( 2 góc kề bù )

hay \(\widehat{IMB}=90^o\) ( \(I\in MD\))

\(\Rightarrow\)Tam giác MBI vuông tại M ( định nghĩa )

Xét tam giác ABC vuông tại A và tam giác MBI vuông tại M có:

\(\Rightarrow\widehat{ABC}\left(\widehat{MBI}\right)\)chuing

Vậy tam giác ABC ~ tam giác MBI ( góc nhọn )

\(\Rightarrow\frac{BA}{BM}=\frac{BC}{BI}\)( 2 cặp cạnh tương ứng )

\(\Leftrightarrow BI.BA=BM.BC\)

 

Đó là những gì mình lm đc nên các bn giúp mk câu c vs d nhé !!!

0