K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ∆ABC và ∆A'B'C' ta có : 

AB = A'B' 

B'A'C' = BAC 

AC = A'C' 

=> ∆ABC = ∆A'B'C' (c.g.c)

b) Xét ∆AMC và ∆A'M'C' ta có : 

AM = A'M' 

BAC = B'A'C' 

AC = A'C' 

=> ∆AMC = ∆A'M'C' (c.g.c)

c) Ta có : 

A'M' + M'B' = A'B' 

AM + MB = AB 

Mà AM = A'M' , A'B' = AB 

=> BM = B'M

d)  Vì ∆ABC = ∆A'B'C' (cmt)

=> ABC = A'B'C' 

Xét ∆MBE và ∆M'B'E' ta có : 

MB = M'B' 

ABC = A'B'C' 

BE = B'E' 

=> ∆MBE = ∆M'B'E' (c.g.c)

HQ
Hà Quang Minh
Giáo viên
14 tháng 9 2023

a) Ta có: \(\frac{{A'B'}}{{AB}} = \frac{2}{6} = \frac{1}{3},\frac{{A'C'}}{{AC}} = \frac{3}{9} = \frac{1}{3},\frac{{B'C'}}{{BC}} = \frac{4}{{12}} = \frac{1}{3}\). Do đó, các tỉ số trên bằng nhau.

b) Ta có: \(\frac{{AM}}{{AB}} = \frac{2}{6} = \frac{1}{3};\frac{{AN}}{{AC}} = \frac{3}{9} = \frac{1}{3}\)

Vì \(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} \Rightarrow MN//BC\) (định lí Thales đảo)

Vì \(MN//BC \Rightarrow \frac{{AM}}{{AB}} = \frac{{AN}}{{AC}} = \frac{{MN}}{{BC}}\) (Hệ quả của định lí Thales)

Do đó, \(\frac{{MN}}{{BC}} = \frac{1}{3} \Leftrightarrow \frac{{MN}}{{12}} = \frac{1}{3} \Rightarrow MN = \frac{{12.1}}{3} = 4\).

Vậy \(MN = 4cm\).

c) Vì \(MN//BC \Rightarrow \Delta ABC\backsim\Delta AMN\) (định lí)(1)

Xét tam giác \(AMN\) và tam giác \(A'B'C'\) ta có:

\(AM = A'B' = 2cm;AN = A'C' = 2cm;MN = B'C' = 4cm\)

Do đó, \(\Delta AMN = \Delta A'B'C'\) (c.c.c)

Vì  \(\Delta AMN = \Delta A'B'C'\) nên \(\Delta AMN\backsim\Delta A'B'C'\) (2)

Từ (1) và (2) suy ra, \(\Delta ABC\backsim\Delta A'B'C'\).

a) Xét ∆ABC và ∆MNP có : 

AC = MP 

AB = AN 

A = M ( gt)

=> ∆ABC = ∆MNP (c.g.c)

b) Xét ∆FCBvà ∆KPN  có : 

FA = MK 

A = M (gt)

AC = MP 

=> ∆FCB = ∆KPN (c.g.c)

c) Ta có :

FA + FB = AB 

KM + KN = MN 

Mà FA = KM 

=> FB = KN 

d) Vì ∆ABC = ∆MNP 

=> ABC = ANP

Xét ∆FEB và ∆KHN có : 

NH = BE 

FB = KN

ABC = ANP (cmt)

=> ∆FEB = ∆KHN (c.g.c)

HQ
Hà Quang Minh
Giáo viên
13 tháng 9 2023

a) Từ kí hiệu của hình vẽ ta thấy các cặp góc bằng nhau là:

\(\widehat A = \widehat {A'};\widehat B = \widehat {B'};\widehat C = \widehat {C'}\)

b) Ta có:

\(\frac{{A'B'}}{{AB}} = \frac{6}{4} = \frac{3}{2};\frac{{A'C'}}{{AC}} = \frac{{7,5}}{5} = \frac{3}{2};\frac{{B'C'}}{{BC}} = \frac{9}{6} = \frac{3}{2}\).

Ta thấy, \(\frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}} = \frac{{B'C'}}{{BC}} = \frac{3}{2}\)

a: góc A=góc A'; góc B=góc B'; góc C=góc C'

b: A'B'/AB=A'C'/AC=B'C'/BC

20 tháng 2 2019

a)Theo đề: BC/B'C'=10/5=1/2