Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O H F D E M K T A B C D E A B C I G D M Hình 1 Hình 2 Hình 3
Câu 1: (Hinh 1)
a) Gọi AO giao BC tại T. Áp dụng ĐL Thales, hệ quả ĐL Thales ta có các tỉ số:
\(\frac{AK}{AB}=\frac{CM}{BC};\frac{CF}{CA}=\frac{OM}{CA}=\frac{TO}{TA}=\frac{TE}{TB}=\frac{TM}{TC}=\frac{TE+TM}{TB+TC}=\frac{ME}{BC}\)
Suy ra \(\frac{AK}{AB}+\frac{BE}{BC}+\frac{CF}{CA}=\frac{CM+BE+ME}{BC}=1\)(đpcm).
b) Dễ có \(\frac{DE}{AB}=\frac{CE}{CB};\frac{FH}{BC}=\frac{BE+CM}{BC};\frac{MK}{CA}=\frac{BM}{BC}\). Từ đây suy ra:
\(\frac{DE}{AB}+\frac{FH}{BC}+\frac{MK}{CA}=\frac{CE+BM+BE+CM}{BC}=\frac{2\left(BE+ME+CM\right)}{BC}=2\)(đpcm).
Câu 2: (Hình 2)
Qua C kẻ đường thẳng song song với AD cắt tia BA tại E. Khi đó dễ thấy \(\Delta\)CAE cân tại A.
Áp dụng hệ quả ĐL Thales có: \(\frac{AD}{CE}=\frac{BA}{BE}\) hay \(\frac{AD}{CE}=\frac{c}{b+c}\Rightarrow AD=\frac{c.CE}{b+c}\)
Vì \(CE< AE+AC=2b\)(BĐT tam giác) nên \(AD< \frac{2bc}{b+c}\)(đpcm).
Câu 3: (Hình 3)
Gọi M và D thứ tự là trung điểm cạnh BC và chân đường phân giác ứng với đỉnh A của \(\Delta\)ABC.
Do G là trọng tâm \(\Delta\)ABC nên \(\frac{AG}{GM}=2\). Áp dụng ĐL đường phân giác trong tam giác ta có:
\(\frac{IA}{ID}=\frac{BA}{BD}=\frac{CA}{CD}=\frac{BA+CA}{BD+CD}=\frac{AB+AC}{BC}=\frac{2BC}{BC}=2\)
Suy ra \(\frac{IA}{ID}=\frac{GA}{GM}\left(=2\right)\). Áp dụng ĐL Thales đảo vào \(\Delta\)AMD ta được IG // BC (đpcm).
2:
a: HM là đường trung bình của ΔEBC
=>EH=HB
KM là đường trug bình của ΔFBC
=>FK=KC
ΔAHM có EO//HM
=>AE/AH=AO/AM
ΔAKM có KM//FO
nên AF/AK=AO/AM
=>AE/AH=AF/AK
=>EF//HK
b: ΔAHM có EO//HM
=>MA/MO=HA/HE
=>MA/MO=HA/HB
ΔAKM có FO//KM
=>MA/MO=KA/KF=KA/KC
=>HA/HB=KA/KC
=>HK//BC
=>EF//BC
a) Kéo dài MP, NP lần lượt cắt BC tại E, D.
Xét tam giác ABC có ME // AC \(\Rightarrow\)\(\frac{AM}{AB}\)= \(\frac{CE}{BC}\)(1)
Xét tam giác ABC có ND // AB \(\Rightarrow\)\(\frac{AN}{AC}\)= \(\frac{BD}{BC}\)(2)
Xét tam giác ABQ có PD//AB \(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}\)
Xét tam giấc ACQ có PE//AC\(\Rightarrow\frac{PQ}{AQ}=\frac{QE}{QC}\)
\(\Rightarrow\frac{PQ}{AQ}=\frac{DQ}{BQ}=\frac{QE}{QC}=\frac{DQ+QE}{BQ+QC}=\frac{DE}{BC}\)(3)
Từ (1), (2), (3) suy ra \(\frac{AM}{AB}+\frac{AN}{AC}+\frac{PQ}{AQ}=\frac{CE}{BC}+\frac{DB}{BC}+\frac{DE}{BC}=1\)(đpcm)
Qua D vẽ DH // với AC ( H thuộc BC )
ta có tam giác BDH ~ tam giác BAC
suy ra BD/DH=AB/AC
áp dụng dlý talét vào tam giác KDH ta có
KE/KD=CE/DH
mà CE=BD
suy ra KE/KD=BD/DH=AB/ACdpcm
làm bừa thui,ai tích mình mình tích lại
Số số hạng là :
Có số cặp là :
50 : 2 = 25 ( cặp )
Mỗi cặp có giá trị là :
99 - 97 = 2
Tổng dãy trên là :
25 x 2 = 50
Đáp số : 50
A B C O M N K E F P Q I J
a) Xét \(\Delta\)AMC: OQ//AC (O\(\in\)AM; Q\(\in\)MC) => \(\frac{OM}{AM}=\frac{MQ}{MC}\)(1)
Tương tự, ta có: \(\frac{OM}{AM}=\frac{MJ}{BM}\)(2)
Từ (1) và (2) => \(\frac{OM}{AM}=\frac{MQ+MJ}{BM+MC}=\frac{JQ}{BC}\)(Tính chất dãy tỉ số bằng nhau)
Xét \(\Delta\)BNC: OQ//NC (O\(\in\)BN; Q\(\in\)BC) => \(\frac{ON}{BN}=\frac{QC}{BC}\)
Tương tự: \(\frac{OK}{CK}=\frac{BJ}{BC}\)
Vây \(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OK}{CK}=\frac{JQ}{BC}+\frac{QC}{BC}+\frac{BJ}{BC}=\frac{BC}{BC}=1\)(đpcm).
b) Đề sai thì phải, theo mình nên sửa \(\frac{IJ}{AC}\)thành \(\frac{IJ}{AB}\)
Ta có: \(\frac{PQ}{AC}=\frac{BQ}{BC}\) và \(\frac{IJ}{AB}=\frac{CJ}{BC}\)(Hệ quả ĐL Thales)
\(\frac{EF}{BC}=\frac{OE}{BC}+\frac{OF}{BC}\)
Lại có: \(\frac{OE}{BC}=\frac{OK}{KC}=\frac{BJ}{BC}\); \(\frac{OF}{BC}=\frac{ON}{BN}=\frac{QC}{BC}\)
\(\Rightarrow\frac{EF}{BC}=\frac{BJ+QC}{BC}\)
\(\Rightarrow\frac{EF}{BC}+\frac{PQ}{AC}+\frac{IJ}{AB}=\frac{BJ+QC+BQ+CJ}{BC}=\frac{BJ+JQ+CJ+JQ+BJ+CJ}{BC}\)
\(=\frac{2BJ+2JQ+2CJ}{BC}=\frac{2.\left(BJ+JQ+CJ\right)}{BC}=\frac{2BC}{BC}=2\)
Vậy: \(\frac{EF}{BC}+\frac{PQ}{AC}+\frac{IJ}{AB}=2\)(đpcm).