K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2016

Trên cạnh BC lấy M là trung điểm. Qua M kẻ đường thẳng vuông góc với B'C' tại D

Ta có \(\hept{\begin{cases}BB'\text{//}MD\text{//}CC'\\BM=MC\end{cases}\Rightarrow}\)MD là đường trung bình của hình thang BCC'B'

\(\Rightarrow BB'+CC'=2MD\)

Mặt khác, ta luôn có \(DM\le AM\left(\text{hằng số}\right)\)

Do đó \(BB'+CC'\le2AM\)

Vậy BB'+CC' đạt giá trị lớn nhất bằng 2AM khi \(xy\perp MA\) tại A

27 tháng 9 2016

cho tau 1 đúng thì ta cho nick idgunny

23 tháng 9 2016

.

23 tháng 9 2016

????

12 tháng 9 2018

Gọi D là trung điểm BC. Kẻ MI vuông  với xyy tại I.

Vì BM vuông góc xy

    CN vuông góc xy

    DI vuông góc xy

=> BM // CN // DI

Vì BM // CN

=> BMNC là hình thang

mà D là trung điểm BC, DI // BM // CN

=> I là trung điểm MN 

mà D là trung điểm BC

=> DI là đường trung bình của hình thang BMNC.

=> DI = \(\frac{BM+CN}{2}\)

=> BM + CN = 2DI

Có DI < DA ( quan hệ giữa đường vuông góc và đường xiên.

Để BM + CN lớn nhất

thì DI lớn nhất

=> DI trùng AD

=> DA vuông góc với xy

Vậy,  nếu xy vuông góc với đường trung tuyến AD của tam giác ABC thì BM + CN lớn nhất.

12 tháng 9 2018

Sao lại thế được. Xin lỗi nhưng cách giải của bạn hơi mâu thuẫn...

13 tháng 10 2020

                                           A B B' M' M I A' C' C d

Kẻ \(MM'\perp d\)

Xét tứ giác BB'CC' có :

\(BB'//CC'\left(\perp d\right)\)

\(\Rightarrow\)Tứ giác BB'CC' là hình thang

Xét hình thang BB'CC' có :

\(BM=MC\left(gt\right)\)

\(MM'//BB'//CC'\left(\perp d\right)\)

\(\Rightarrow B'M=C'M\)

\(\Rightarrow\)MM' là đường trung bình của hình thang ABCD

\(\Rightarrow MM'=\frac{BB'+CC'}{2}\left(1\right)\)

Xét \(\Delta AA'I\)và \(\Delta MM'I\)có :

            \(\widehat{AA'I}=\widehat{MM'I}\left(=90^o\right)\)

                 \(AI=IM\left(gt\right)\)

            \(\widehat{AIA'}=\widehat{MIM'}\)( đối đỉnh )

\(\Rightarrow\Delta AA'I=\Delta MM'I\left(ch-gn\right)\)

\(\Rightarrow AA'=MM'\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow AA'=\frac{BB'+CC'}{2}\)