Cho tam giác ABC và điểm O nằm trong tam gisc , điểm E nằm trên cạnh AO từ EF//AB...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2023

Xét ΔOAB có EF//AB

nên \(\dfrac{OE}{EA}=\dfrac{OF}{FB}\left(1\right)\)

Xét ΔOAC có EH//AC

nên \(\dfrac{OE}{EA}=\dfrac{OH}{HC}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{OF}{FB}=\dfrac{OH}{HC}\)

Xét ΔOBC có \(\dfrac{OF}{FB}=\dfrac{OH}{HC}\)

nên FH//BC

24 tháng 9 2023

Đầu tiên, ta có EF//AB và EH//AC. Theo định lí Thales, khi có hai đường thẳng song song cắt qua các đường thẳng tạo ra các đoạn thẳng có tỉ số bằng nhau, ta có thể kết luận rằng các đoạn thẳng tạo ra bởi các đường thẳng song song đó cũng có tỉ số bằng nhau. Vì vậy, ta có:

EF/AB = EH/AC

Tiếp theo, ta sẽ sử dụng định lí Bồi thường. Theo định lí Bồi thường, khi có hai đường thẳng song song cắt qua một đường thẳng, các đoạn thẳng tạo ra bởi các đường thẳng song song đó và đường thẳng cắt qua có tỉ số bằng nhau, thì các đoạn thẳng tạo ra bởi các đường thẳng song song đó cũng có tỉ số bằng nhau. Vì vậy, ta có:

FH/BC = EH/AC

Vì EF//AB và FH/BC = EH/AC, ta có FH//BC.

24 tháng 9 2023

giải ra đc ko ạ

28 tháng 8 2021

Bài 1. Tham khảo thôi.

undefined

28 tháng 8 2021

Tham khảo câu trả lời bài 2undefined

17 giờ trước (20:57)

a: Xét ΔBHA vuông tại Hvà ΔBHK vuông tại H có

BH chung

HA=HK

Do đó: ΔBHA=ΔBHK

=>BA=BK

=>\(\hat{BAK}=\hat{BKA}\)

b: ta có; \(\hat{BAD}=\hat{KAD}=\frac12\cdot\hat{BAK}\) (AD là phân giác của góc BAK)

\(\hat{BKI}=\hat{AKI}=\frac12\cdot\hat{BKA}\) (KI là phân giác của góc BKA)

\(\hat{BAK}=\hat{BKA}\)

nên \(\hat{BAD}=\hat{KAD}=\hat{BKI}=\hat{AKI}\)

Xét ΔBAD và ΔBKI có

\(\hat{BAD}=\hat{BKI}\)

BA=BK

\(\hat{ABD}\) chung

Do đó: ΔBAD=ΔBKI

=>BD=BI; AD=KI

Xét ΔBAK có \(\frac{BI}{BA}=\frac{BD}{BK}\)

nên IK//AK

=>AKDI là hình thang

Hình thang AKDI có AD=KI

nên AKDI là hình thang cân

9 tháng 9 2017

A B C O D E F

\(\frac{OA}{AD}=\frac{S_{AOB}}{S_{ABD}}=\frac{S_{AOC}}{S_{ACD}}=\frac{S_{AOB}+S_{AOC}}{SABC}\)

Tương tự rồi cộng lại ta đc

\(\frac{OA}{AD}+\frac{OB}{BE}+\frac{OC}{CF}=\frac{2\left(S_{AOB}+S_{BOC}+S_{COA}\right)}{S_{ABC}}=2\)

8 tháng 9 2017

Bài Giải

Đặt SBOC=x2,SAOC=y2,SAOB=z2 ⇒SABC=SBOC+SAOC+SAOB=x2+y2+z2

Ta có : ADOD =SABCSBOC =AO+ODOD =1+AOOD =x2+y2+z2x2 =1+y2+z2x2 

⇒AOOD =y2+z2x2 ⇒√AOOD =√y2+z2x2 =√y2+z2x 

Tương tự ta có √OBOE =√x2+z2y2 =√x2+z2y ;√OCOF =√x2+y2z2 =√x2+y2z 

⇒P=√x2+y2z +√y2+z2x +√x2+z2y ≥x+y√2z +y+z√2x +x+z√2y 

           =1√2 [(xy +yx )+(yz +zy )+(xz +zx )]≥1√2 (2+2+2)=3√2

Dấu "=" xảy ra khi x=y=z⇒SBOC=SAOC=SAOB=13 SABC

⇒ODOA =OEOB =OFOC =13 ⇒O là trọng tâm của tam giác ABC

Vậy MinP=3√2 khi O là trọng tâm của tam giác ABC

2:

a: HM là đường trung bình của ΔEBC

=>EH=HB

KM là đường trug bình của ΔFBC

=>FK=KC

ΔAHM có EO//HM

=>AE/AH=AO/AM

ΔAKM có KM//FO

nên AF/AK=AO/AM

=>AE/AH=AF/AK

=>EF//HK

b: ΔAHM có EO//HM

=>MA/MO=HA/HE

=>MA/MO=HA/HB

ΔAKM có FO//KM

=>MA/MO=KA/KF=KA/KC

=>HA/HB=KA/KC

=>HK//BC

=>EF//BC

2 tháng 4 2020

Đáp án:

Giải thích các bước giải:

a, ta có tỉ lệ \(\frac{AM}{AB}\)\(\frac{3}{3+2}\)\(\frac{3}{5}\)

\(\frac{AN}{AC}\)\(\frac{7,5}{7,5+5}\)\(\frac{3}{5}\)do đó \(\frac{AM}{AB}\)\(\frac{AN}{AC}\)suy ra đpcm

b ) vì MN//BC nên \(\frac{MK}{BI}\)\(\frac{NK}{CT}\)\(\frac{AK}{AI}\)mà BI = IC nên MK = KN suy ra K là trung điểm MN