Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCP có
F là trung điểm chung của AC và BP
nen ABCP là hình bình hành
Suy ra: AP//BC và AP=BC
Xét tứ giác AQBC có
E là trug điểm chung của AB và QC
nên AQBC là hình bình hành
Suy ra: AQ//BC và AQ=BC
=>AP=AQ
b: Ta có: AQ//BC
AP//BC
DO đó: P,A,Q thẳng hàng
c: Ta có: AQBC là hình bình hành
nên BQ//AC
Ta có: ABCP là hình bình hành
nên CP//AB
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ.
a: Xét tứ giác ABCP có
F là trung điểm chung của AC và BP
nen ABCP là hình bình hành
Suy ra: AP//BC và AP=BC
Xét tứ giác AQBC có
E là trug điểm chung của AB và QC
nên AQBC là hình bình hành
Suy ra: AQ//BC và AQ=BC
=>AP=AQ
b: Ta có: AQ//BC
AP//BC
DO đó: P,A,Q thẳng hàng
c: Ta có: AQBC là hình bình hành
nên BQ//AC
Ta có: ABCP là hình bình hành
nên CP//AB
a) Xét tam giác AEQ và tam giác BEC có
EQ=EC
AEQ=BEC đối đỉnh
EA=EB
=> tam giác AEQ = tam giác BEC(c.g.g).
=> AQ=BC(cạnh tuognư ứng). (1)
Xét Tam giác AFP và tam giác CFB có
AF=CF
AFP=CFB đối đỉnh
FB=FP
=> tam giác AFB = tam giác CFB(c.g.c)
=> AP = BC (2)
từ (1) và (2) suy ra AP=AQ
c)
xét tam giác BEQ và tam giác AEC có
EQ=EC
BEQ=AEC đối đỉnh
EB=EA
=> tam giác BEQ = tam giác AEC(c.g.c)
=> BQE=AEC (góc tương ứng)
mà chúng ở vị trí so le trong nên BQ//AC.
xét tam giác PFC và BFA có:
FA=FC
AFB=CFP
BF=PF
=> tam giác PFC = BFA (c.g.c)
=> FAB = FCB(góc tương ứng)
mà chúng ở vị trí số le trong nên
CP//AB
a: Xét tứ giác ABCP có
F là trug điểm của AC
F là trung điểm của BP
Do đó: ABCP là hbh
=>AP//BC và AP=BC
Xét tứ giác AQBC có
E là trung điểm của AB
E là trung điểm của QC
Do đó: AQBC là hbh
=>AQ//BC và AQ=BC
=>AQ=AP
b: Ta có: AP//BC
AQ//BC
Do đó: P,A,Q thẳng hàng
c: Ta có: ABCP là hình bình hành
nên CP//AB
a) Xét tam giác\(BAP\)có:
\(E,F\)lần lượt là trung điểm của \(BA,BP\)
nên \(EF\)là đường trung bình của tam giác \(BEF\).
Suy ra \(EF//AP,EF=\frac{1}{2}AP\).
Tương tự ta cũng có \(EF//AQ,EF=\frac{1}{2}AQ\).
Có qua \(A\)có \(AP,AQ\)đều song song với \(EF\)nên \(Q,A,P\)thẳng hàng.
mà \(AP=AQ\left(=2EF\right)\)suy ra \(A\)là trung điểm của \(PQ\).
b) Xét tam giác \(ABC\):
\(E,F\)lần lượt là trung điểm \(AB,AC\)
nên \(EF\)là đường trung bình của tam giác \(ABC\)
suy ra \(EF//BC,EF=\frac{1}{2}BC\).
suy ra \(BC//AQ,BC=AQ\)
do đó tứ giác \(ACBQ\)là hình bình hành.
suy ra \(BQ//AC\)
.Tương tự ta cũng chứng minh được \(ABCP\)là hình bình hành
suy ra \(CP//AB\).
c) \(BC=\frac{1}{2}PQ,BC//PQ\)nên \(BC\)là đường trung bình của tam giác \(PQR\).
Do đó \(B,C\)lần lượt là trung điểm của \(QR,PR\).
suy ra \(AC,AB\)là hai đường trung bình của tam giác \(PQR\)
suy ra \(AC=\frac{1}{2}QR,AB=\frac{1}{2}PR\).
\(P_{PQR}=PQ+QR+PR=2\left(AB+BC+CA\right)=2P_{ABC}\)
ta có đpcm.
d) Có \(RA,PB,QC\)là ba đường trung tuyến trong tam giác \(PQR\)do đó chúng đồng quy tại một điểm.
Ta có đpcm.
cam on ban nhieu lam :))))))))))))))))))))))))))))))))))))))))
a: Xét tứ giác ABCP có
F là trung điểm chung của AC và BP
=>ABCP là hình bình hành
=>AP=BC và AP//BC
b: Xét tứ giác AQBC có
E là trung điểm chung của AB và QC
=>AQBC là hình bình hành
=>AQ//BC và AQ=BC
=>AP=AQ và AP//AQ
=>A là trung điểm của PQ
c: BA+BC=BC+CP>CP=2BF