K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

hình vẽ

vì \(\frac{AM}{MB}\)\(\frac{AN}{NC}\) nên MN // BC ( định lý ta- let đảo) 

MN//BC 

áp dụng hệ quả của định lý ta-let ta có 

\(\frac{AM}{MB}\)\(\frac{MK}{MI}\)(1) 

\(\frac{AN }{NC}\)\(\frac{KN}{IC}\) (2) 

từ (1) và (2) 

=> \(\frac{MK}{MI}\)\(\frac{KN}{IC}\)

mà Mi = IC 

nên MK = KN => K là trung điểm của MN

16 tháng 1 2017

A B C I K

Có: \(\frac{AM}{MB}=\frac{AN}{NA}\)

=> MN//BC (theo đl ta-lét đảo)

Vì: MK//BI(cmt)

=> \(\frac{MK}{BI}=\frac{AK}{AI}\) (theo đl ta lét) (1)

Vì: KN//IC(cmt)

=> \(\frac{NK}{IC}=\frac{AK}{AI}\) (thep đl ta lét) (2)

Từ (1)(2) suy ra: \(\frac{MK}{BI}=\frac{NK}{IC}\)

Mà BI=IC(gt)

=> MK=NK

=> K là trung điểm của MN

13 tháng 2 2020

Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33

A B C M K D E

a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)

\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )

Mà : \(MC=MB\) ( Do M là trung điểm của BC )

\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )

b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )

Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)

\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)

Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)

\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)

c)  Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :

+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)

+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)

\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )

Nên : E là trung điểm của KD ( đpcm )

d) Ta có : \(KD=10\Rightarrow KE=5\)

Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)

\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)

Vậy : \(BC=16cm\)

4 tháng 3 2020

Heeeeeeeeeeey

8 tháng 5 2018

Mình ko biết làm :>

8 tháng 5 2018

M N A B C I K a, Vì MN // BC nên \(\dfrac{AM}{AB}=\dfrac{MN}{BC}=\dfrac{3}{12}\Rightarrow MN=\dfrac{3}{12}BC=4\left(cm\right)\)( áp dụng định lí Talet)

b,Câu này bạn áp dụng định lí Ta-lét cho 2 tam giác ABI và ACI ta đc \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\)\(\dfrac{AN}{AC}=\dfrac{KN}{CI}\)\(\dfrac{AM}{AB}=\dfrac{AN}{AC}\) và CI=BI nên MK=KN => K là TĐ của MN

6 tháng 2 2020

a,Vì MN=MA (gt)=> M là trung điểm của AN

xét tứ giác ABNC có; AN và BC là hai đường chéo cắt nhau tại M

                                     M là trung điểm của BC (gt)

                                     M là trung điểm của AN (cmt)

=> ABNC là hình bình hành 

b, Vì tgABC vuông cân tại A => AB=AC;gBAC=90độ

vì ABNC là hình bình hành (cmt) có AB = AC 

=> ABNC là hình thoi 

xét hình thoi ABNC có gBAC = 90 độ => ABNC là hình vuông