Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hình vẽ
vì \(\frac{AM}{MB}\)= \(\frac{AN}{NC}\) nên MN // BC ( định lý ta- let đảo)
MN//BC
áp dụng hệ quả của định lý ta-let ta có
\(\frac{AM}{MB}\)= \(\frac{MK}{MI}\)(1)
\(\frac{AN }{NC}\)= \(\frac{KN}{IC}\) (2)
từ (1) và (2)
=> \(\frac{MK}{MI}\)= \(\frac{KN}{IC}\)
mà Mi = IC
nên MK = KN => K là trung điểm của MN
A B C I K
Có: \(\frac{AM}{MB}=\frac{AN}{NA}\)
=> MN//BC (theo đl ta-lét đảo)
Vì: MK//BI(cmt)
=> \(\frac{MK}{BI}=\frac{AK}{AI}\) (theo đl ta lét) (1)
Vì: KN//IC(cmt)
=> \(\frac{NK}{IC}=\frac{AK}{AI}\) (thep đl ta lét) (2)
Từ (1)(2) suy ra: \(\frac{MK}{BI}=\frac{NK}{IC}\)
Mà BI=IC(gt)
=> MK=NK
=> K là trung điểm của MN
Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33
A B C M K D E
a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)
\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )
Mà : \(MC=MB\) ( Do M là trung điểm của BC )
\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )
b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )
Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)
\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)
Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)
\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)
c) Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :
+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)
+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)
\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )
Nên : E là trung điểm của KD ( đpcm )
d) Ta có : \(KD=10\Rightarrow KE=5\)
Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)
\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)
Vậy : \(BC=16cm\)
M N A B C I K a, Vì MN // BC nên \(\dfrac{AM}{AB}=\dfrac{MN}{BC}=\dfrac{3}{12}\Rightarrow MN=\dfrac{3}{12}BC=4\left(cm\right)\)( áp dụng định lí Talet)
b,Câu này bạn áp dụng định lí Ta-lét cho 2 tam giác ABI và ACI ta đc \(\dfrac{AM}{AB}=\dfrac{MK}{BI}\) VÀ \(\dfrac{AN}{AC}=\dfrac{KN}{CI}\) mà \(\dfrac{AM}{AB}=\dfrac{AN}{AC}\) và CI=BI nên MK=KN => K là TĐ của MN
a,Vì MN=MA (gt)=> M là trung điểm của AN
xét tứ giác ABNC có; AN và BC là hai đường chéo cắt nhau tại M
M là trung điểm của BC (gt)
M là trung điểm của AN (cmt)
=> ABNC là hình bình hành
b, Vì tgABC vuông cân tại A => AB=AC;gBAC=90độ
vì ABNC là hình bình hành (cmt) có AB = AC
=> ABNC là hình thoi
xét hình thoi ABNC có gBAC = 90 độ => ABNC là hình vuông
bạn xem mk giải bài này tương tự nha, đổi tên điểm thôi
https://hoc24.vn/hoi-dap/question/914470.html