K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

Hình vẽ trước đã !

Hình học lớp 7

8 tháng 1 2017

Xét \(\Delta DEA\)\(\Delta BAC\) có:

AE=AC( GT)

\(\widehat{DAE}\)=\(\widehat{BAC}\)( Đối đỉnh)

AB= AD( GT)

=> \(\Delta DEA\)=\(\Delta BAC\)( c-g-c)

Khi đó: \(\widehat{EDA}\)=\(\widehat{CBA}\) ( cặp góc tương ứng)

Xét \(\Delta NDA\)\(\Delta MBA\) có:

DN=BM ( GT)

\(\widehat{EDA}\)=\(\widehat{CBA}\)( C/m trên)

AB=AD( GT)

=>\(\Delta NDA\)=\(\Delta MBA\)( c-g-c)

Khi đó: \(\widehat{BAM}\)=\(\widehat{DAN}\)( cặp góc tương ứng)(1)

Ta có: \(\widehat{DAN}\)+\(\widehat{NAB}\)= 180 độ ( Kề bù)(2)

Kết hợp (1) và (2) suy ra:\(\widehat{BAM}\)+\(\widehat{NAB}\)= 180 độ

Khi đó: \(\widehat{MAN}\)= 180 độ

=> M,A,N thẳng hàng

18 tháng 12 2020

a)

Sửa đề: ΔABM=ΔADN

Xét ΔAED và ΔACB có 

AE=AC(gt)

\(\widehat{EAD}=\widehat{CAB}\)(hai góc đối đỉnh)

AD=AB(gt)

Do đó: ΔAED=ΔACB(c-g-c)

\(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)

hay \(\widehat{ADN}=\widehat{ABM}\)

Xét ΔADN và ΔABM có

DN=BM(gt)

\(\widehat{ADN}=\widehat{ABM}\)(cmt)

AD=AB(gt)

Do đó: ΔADN=ΔABM(c-g-c)

b) Ta có: ΔADN=ΔABM(cmt)

nên \(\widehat{DAN}=\widehat{BAM}\)(hai góc tương ứng)

mà \(\widehat{BAM}+\widehat{DAM}=180^0\)(hai góc kề bù)

nên \(\widehat{DAN}+\widehat{DAM}=180^0\)

\(\Leftrightarrow\widehat{NAM}=180^0\)

hay M,A,N thẳng hàng(đpcm)

14 tháng 8 2020

a)

Có:    \(AD=AB;AE=AC\)

=>   \(\frac{AD}{AB}=1;\frac{AE}{AC}=1\)

=>    \(\frac{AD}{AB}=\frac{AE}{AC}=1\)

Áp dụng định lí Talet đảo ta được:

=>   DE // BC.

=>   \(NDA=ABM\)     (2 góc ở vị trí so le trong)

Xét tam giác ABM và tam giác ADN có:

\(\hept{\begin{cases}AB=AD\left(gt\right)\\ABM=ADN\left(cmt\right)\\BM=DN\left(gt\right)\end{cases}}\)

=>    Tam giác ABM = Tam giác ADN (cgc)

=>    TA CÓ ĐPCM.

b) Do Tam giác ABM = Tam giác ADN (cmt)

=>    \(BAM=DAN\)

Áp dụng định lí Talet khi BC // DE ta được:

=>   \(\frac{AD}{AB}=\frac{AE}{AC}=\frac{DE}{BC}\)

Mà:    \(\frac{AD}{AB}=\frac{AE}{AC}=1\left(cmt\right)\)

=>    \(\frac{DE}{BC}=1\Rightarrow DE=BC\)

Mà:   \(BM=DN\left(gt\right)\Rightarrow NE=MC\)

Khi đó,  CMTT: Tam giác AMC = Tam giác ANE (cgc)

=>   \(MAC=NAE\)

Ta có:    \(BAC+ABC+ACB=180\)      (ĐỊNH LÍ TỔNG 3 GÓC TRONG TAM GIÁC)

=>    \(BAM+MAC+ABC+ACB=180\)        (1)

Mà:   E, A, C là 3 điểm thẳng hàng

=>   góc EAB là góc ngoài của tam giác ABC

=>   \(EAB=ABC+ACB\)         (2)

Và:   \(MAC=EAN\left(cmt\right)\)         (3)

TỪ (1); (2) VÀ (3) TA ĐƯỢC:

=>    \(BAM+NAE+BAE=180\)

=>    \(NAM=180\)

=>     3 điểm M, N, A thẳng hàng.

VẬY TA CÓ ĐPCM.

14 tháng 8 2020

A B C D E N M

a) xét \(\Delta ADE\)VÀ \(\Delta ABC\)

\(AD=AB\left(gt\right);\widehat{DAE}=\widehat{BAC}\left(Đ^2\right);AE=AC\left(gt\right)\)

=> \(\Delta ADE\)=\(\Delta ABC\)(c-g-c)

=> \(\widehat{ADE}=\widehat{ABC}\)( hai góc tương ứng ) hay \(\widehat{ADN}=\widehat{ABM}\)

xét \(\Delta ABM\)VÀ \(\Delta ADN\)

\(BM=DM\left(gt\right);\widehat{ADN}=\widehat{ABM}\left(cmt\right);AB=AD\left(gt\right)\)

=>\(\Delta ABM\)=\(\Delta ADN\)(c-g-c)

b tối tớ suy nghỉ

2 tháng 3
  • Chứng minh ∆ADE = ∆ABC:
    Dùng tiêu chí Cạnh-Góc-Cạnh vì:
    • \(A B = A D\) (A là trung điểm của BD).
    • \(A C = A E\) (A là trung điểm của CE).
    • \(\angle B A C = \angle D A E\) (góc đối đỉnh).
  • Chứng minh DE // BC:
    \(\Delta A D E = \Delta A B C\) (theo C-G-C), nên:
    \(\angle A D E = \angle A B C\)\(\angle D E A = \angle A C B\).
    DE // BC theo định lý góc đồng vị.
  • Chứng minh M, A, N thẳng hàng:
    M, N lần lượt là trung điểm của DE và BC nên AM là đường trung bình của tam giác lớn. Đường trung bình đi qua trung điểm nối song song với cạnh còn lại nên M, A, N thẳng hàng.
2 tháng 5 2019

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

ΔABC và ΔADE có:

AB = AD (gt)

AC = AE (gt)

∠BAC = ∠DAE (hai góc đối đỉnh)

⇒ ΔABC = ΔADE (c.g.c)

⇒ ∠C = ∠E ⇒ DE // BC.

31 tháng 1 2019

ABC là gì hả bn ? Hình tam giác à

1 tháng 8 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

ΔAEM và ΔACN có:

∠C = ∠E ( hai góc so le trong, DE// BC)

AE = AC ( giả thiết)

∠EAM = ∠CAN (hai góc đối đỉnh)

⇒ ΔAEM = ΔACN (g.c.g) ⇒ AM = AN ( hai cạnh tương ứng).

18 tháng 2 2016

tg ADE=ABC( AB=AD;AC=AE;A đối đỉnh)

=>gocE=C

xet tg AEN va tgACM bằng nhau( CM=EN;AE=AC;E=C)

=> goc NAE=CAM ( 2 goc nay o vi tri đối đỉnh nên M;A;N 

26 tháng 3 2021

bạn làm chi tiết hơn đc ko