K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

Vẽ  đường cao AH. Kéo dài AH cắt DE tại G

Góc DAG + góc BAH=\(180^0\)( Vì góc DAB=90 độ )

Góc BAH + góc ABH=\(180^0\)( Vì \(\Delta ABH\)vuông tại H )

\(\Rightarrow\)Góc DAG = góc ABH ( Vì cùng phụ với góc BAH )

Tương từ ta có :

Góc GAE = góc ACH ( Vì cùng phụ với góc HAC )

Mà góc BAC = \(180^0\)- ABH - ACH , góc DAE = DAG + GAE = ABH + ACH

\(\Rightarrow\)DAE + BAC =\(180^0\)-  ABH - ACH + ABH + ACH = \(180^0\)

A C B H E D G

6 tháng 8 2021

Hình của tôi hơi xấu nha mong thông cảm

15 tháng 1 2017

Dùng hình của bạn Mai nhé.

Kẽ DP và EQ \(⊥\)HK tại P và Q.

Xét \(\Delta DPA\)và \(\Delta AHB\)

\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)

\(\Rightarrow\Delta DPA=\Delta AHB\)

\(\Rightarrow DP=AH\left(1\right)\)

Xét \(\Delta EQA\)và \(\Delta AHC\)

\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)

\(\Rightarrow\Delta EQA=\Delta AHC\)

\(\Rightarrow EQ=AH\left(2\right)\)

Từ (1) và (2) \(\Rightarrow DP=EQ\)

Xét \(\Delta DPK\)và \(\Delta EQK\)

\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)

\(\Rightarrow\Delta DPK=\Delta EQK\)

\(\Rightarrow DK=EK\)

Vậy K là trung điểm của DE

15 tháng 1 2017

Hình đây anh @alibaba

A B C H E D K

19 tháng 3 2022

a, Ta có:

góc DAB = góc EAC( Vì cùng phụ góc BAC)

AD= AC

AB=AE

Nên tam giác ABD = tam giác AEC

Vây BD = CEb,

b, Ta có: góc NAC = góc ADE ( cmt )

Mà góc NAC + góc DAM = 90 độ nên ADE + góc DAM = 90 độ

Vậy DIA = 90 độ

Áp dụng pytago ta có:

AD2+IE2/DI2+AE2=(AD2+DI2)+(AE2−AI2)/DI2+AE2=1

19 tháng 3 2022

cm tam giác abd = tam giác ace

 

7 tháng 2 2018

Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

a: Ta có: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=\widehat{BAC}+90^0\)

\(\widehat{CAD}=\widehat{CAB}+\widehat{DAB}=\widehat{BAC}+90^0\)

Do đó: \(\widehat{BAE}=\widehat{CAD}\)

Xét ΔBAE và ΔDAC có

AB=AD

\(\widehat{BAE}=\widehat{DAC}\)

AE=AC

DO đó: ΔBAE=ΔDAC

=>BE=DC

b: Gọi giao điểm của BE và CD là H

Ta có: ΔBAE=ΔDAC

=>\(\widehat{ABE}=\widehat{ADC};\widehat{AEB}=\widehat{ACD}\)

Xét tứ giác AHBD có \(\widehat{ADH}=\widehat{ABH}\)

nên AHBD là tứ giác nội tiếp

=>\(\widehat{DHA}=\widehat{DBA}=45^0\)

Xét tứ giác AHCE có \(\widehat{AEH}=\widehat{ACH}\)

nên AHCE là tứ giác nội tiếp

=>\(\widehat{AHE}=\widehat{ACE}=45^0\)

\(\widehat{DHE}=\widehat{DHA}+\widehat{EHA}=45^0+45^0=90^0\)

=>EB\(\perp\)CD tại H

1 tháng 1 2021

a)   ta có :∠EAC=90(gt)

                ∠BAD=90o(gt)

=>∠EAC+∠BAC=∠BAD+∠BAC

=>∠EAB=∠DAC

Xét △ADC và △ABC,có:

AD=AB(gt)

∠CAB=∠EAB(cmt)

AE=AC(gt)

=>△ADC=△ABE(c.g.c)

=>BE=DC(t/ư)

27 tháng 8

a) Chứng minh BC = 2AM

1. Thiết lập hệ tọa độ: Đặt A là gốc tọa độ: A(0,0). Vì AD vuông góc với AB và AD = AB, ta có thể đặt B(c, 0) và D(0, c) với c là độ dài AB = AD. Tương tự, vì AE vuông góc với AC và AE = AC, ta có thể đặt C(0, b) và E(b, 0) với b là độ dài AC = AE.

2. Tìm tọa độ M: M là trung điểm của DE. Tọa độ của M là trung bình cộng tọa độ của D và E: M = ( (0+b)/2 , (c+0)/2 ) = (b/2, c/2).

Tính BC và AM: Độ dài BC: BC = |sqrt( (c-0)^2 + (0-b)^2 )| = sqrt(c^2 + b^2). Độ dài AM: AM = |sqrt( (b/2 - 0)^2 + (c/2 - 0)^2 )| = sqrt( (b/2)^2 + (c/2)^2 ) = sqrt(b^2/4 + c^2/4) = (1/2) * sqrt(b^2 + c^2). Từ đó, ta có BC = 2 * AM.

b) Chứng minh AM vuông góc với BC

1. Tìm tọa độ vector MA và vector BC: Vector MA = A - M = (0 - b/2, 0 - c/2) = (-b/2, -c/2). Vector BC = C - B = (0 - c, b - 0) = (-c, b).

2. Kiểm tra tích vô hướng: MA · BC = (-b/2) * (-c) + (-c/2) * b = (bc/2) - (bc/2) = 0. Vì tích vô hướng của hai vector MA và BC bằng 0, nên AM vuông góc với BC.

Cho mình sửa lại ạ

a: Trên tia đối của tia MA, lấy K sao cho MA=MK

=>M là trung điểm của AK

ta có; \(\hat{DAE}+\hat{DAB}+\hat{EAC}+\hat{BAC}=360^0\)

=>\(\hat{DAE}+\hat{BAC}=360^0-90^0-90^0=180^0\left(1\right)\)

Xét ΔMAE và ΔMKD có

MA=MK

\(\hat{AME}=\hat{KMD}\) (hai góc đối đỉnh)

ME=MD

Do đó: ΔMAE=ΔMKD

=>\(\hat{MAE}=\hat{MKD}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AE//KD

=>\(\hat{KDA}+\hat{DAE}=180^0\left(2\right)\)

Từ (1),(2) suy ra \(\hat{KDA}=\hat{BAC}\)

Ta có: ΔMAE=ΔMKD

=>AE=KD

mà AE=CA

nên AC=KD

Xét ΔKDA và ΔCAB có

KD=CA

\(\hat{KDA}=\hat{CAB}\)

DA=AB

Do đó: ΔKDA=ΔCAB

=>KA=CB

mà KA=2AM

nên BC=2AM

b: Gọi H là giao điểm của AM và BC

ΔKDA=ΔCAB

=>\(\hat{KAD}=\hat{CBA}\)

TA có: \(\hat{KAD}+\hat{DAB}+\hat{BAH}=180^0\)

=>\(\hat{KAD}+\hat{BAH}=180^0-90^0=90^0\)

=>\(\hat{BAH}+\hat{ABC}=90^0\)

=>ΔAHB vuông tại H

=>AH⊥BC tại H

=>MA⊥BC tại H