Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hình đẹp lắm lè
A H B C D E O K I
kẻ DO _|_ AH tại O
EI _|_ AH tại I
có góc OAD + góc BAD + góc BAH = 180
góc BAD = 90 do AD _|_ AB (gt)
=> góc OAD + góc BAH = 90 (1)
DO _|_ AH (Cách vẽ) => góc DOA = 90
=> góc ODA + góc DAO = 90 (2)
(1)(2) => góc ODA = góc BAH
xét tam giác ODA và tam giác HAB có : góc BHA = góc DOA = 90
AD = AB (gt)
=> tam giác ODA = tam giác HAB (ch - gn)
=> DO = AH (định nghĩa) (3)
làm tương tự với tam giác AHC và tam giác EIA
=> AH = EI (4)
(3)(4) => DO = EI
có EI; DO _|_ AH (cách vẽ)=> EI // DO => góc IEK = góc KDO (định lí)
xét tam giác ODK và tam giác IEK có : góc DOK = góc EIK = 90
=> tam giác ODK = tam giác IEK (cgv - gnk)
=> DK = KE mà K nằm giữa D và E
=> K là trung điểm của DE

a) Chứng minh BC = 2AM
1. Thiết lập hệ tọa độ: Đặt A là gốc tọa độ: A(0,0). Vì AD vuông góc với AB và AD = AB, ta có thể đặt B(c, 0) và D(0, c) với c là độ dài AB = AD. Tương tự, vì AE vuông góc với AC và AE = AC, ta có thể đặt C(0, b) và E(b, 0) với b là độ dài AC = AE.
2. Tìm tọa độ M: M là trung điểm của DE. Tọa độ của M là trung bình cộng tọa độ của D và E: M = ( (0+b)/2 , (c+0)/2 ) = (b/2, c/2).
Tính BC và AM: Độ dài BC: BC = |sqrt( (c-0)^2 + (0-b)^2 )| = sqrt(c^2 + b^2). Độ dài AM: AM = |sqrt( (b/2 - 0)^2 + (c/2 - 0)^2 )| = sqrt( (b/2)^2 + (c/2)^2 ) = sqrt(b^2/4 + c^2/4) = (1/2) * sqrt(b^2 + c^2). Từ đó, ta có BC = 2 * AM.
b) Chứng minh AM vuông góc với BC
1. Tìm tọa độ vector MA và vector BC: Vector MA = A - M = (0 - b/2, 0 - c/2) = (-b/2, -c/2). Vector BC = C - B = (0 - c, b - 0) = (-c, b).
2. Kiểm tra tích vô hướng: MA · BC = (-b/2) * (-c) + (-c/2) * b = (bc/2) - (bc/2) = 0. Vì tích vô hướng của hai vector MA và BC bằng 0, nên AM vuông góc với BC.
Cho mình sửa lại ạ
a: Trên tia đối của tia MA, lấy K sao cho MA=MK
=>M là trung điểm của AK
ta có; \(\hat{DAE}+\hat{DAB}+\hat{EAC}+\hat{BAC}=360^0\)
=>\(\hat{DAE}+\hat{BAC}=360^0-90^0-90^0=180^0\left(1\right)\)
Xét ΔMAE và ΔMKD có
MA=MK
\(\hat{AME}=\hat{KMD}\) (hai góc đối đỉnh)
ME=MD
Do đó: ΔMAE=ΔMKD
=>\(\hat{MAE}=\hat{MKD}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AE//KD
=>\(\hat{KDA}+\hat{DAE}=180^0\left(2\right)\)
Từ (1),(2) suy ra \(\hat{KDA}=\hat{BAC}\)
Ta có: ΔMAE=ΔMKD
=>AE=KD
mà AE=CA
nên AC=KD
Xét ΔKDA và ΔCAB có
KD=CA
\(\hat{KDA}=\hat{CAB}\)
DA=AB
Do đó: ΔKDA=ΔCAB
=>KA=CB
mà KA=2AM
nên BC=2AM
b: Gọi H là giao điểm của AM và BC
ΔKDA=ΔCAB
=>\(\hat{KAD}=\hat{CBA}\)
TA có: \(\hat{KAD}+\hat{DAB}+\hat{BAH}=180^0\)
=>\(\hat{KAD}+\hat{BAH}=180^0-90^0=90^0\)
=>\(\hat{BAH}+\hat{ABC}=90^0\)
=>ΔAHB vuông tại H
=>AH⊥BC tại H
=>MA⊥BC tại H

Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
Vẽ đường cao AH. Kéo dài AH cắt DE tại G
Góc DAG + góc BAH=\(180^0\)( Vì góc DAB=90 độ )
Góc BAH + góc ABH=\(180^0\)( Vì \(\Delta ABH\)vuông tại H )
\(\Rightarrow\)Góc DAG = góc ABH ( Vì cùng phụ với góc BAH )
Tương từ ta có :
Góc GAE = góc ACH ( Vì cùng phụ với góc HAC )
Mà góc BAC = \(180^0\)- ABH - ACH , góc DAE = DAG + GAE = ABH + ACH
\(\Rightarrow\)DAE + BAC =\(180^0\)- ABH - ACH + ABH + ACH = \(180^0\)
A C B H E D G
Hình của tôi hơi xấu nha mong thông cảm