Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M N P E F H K
Gọi PH và NF là 2 đường cao của \(\Delta\)BNP; CK và AE lần lượt là đường cao của \(\Delta\)CMP và \(\Delta\)AMN
Xét tứ giác BNMP có: BN // MP; MN // BP => Tứ giác BNMP là hình bình hành
=> MP = BN; MN = BP
Ta có: \(S_{CMP}=\frac{CK.MP}{2};S_{BNP}=\frac{PH.BN}{2}\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CK}{PH}\)(Do MP = BN) (1)
MP // BN => ^MPC = ^NBC (Đồng vị) Hay ^KPC = ^HBP.
Xét \(\Delta\)CKP và \(\Delta\)PHB có: ^CKP = ^PHB (=900); ^KPC = ^HBP
=> \(\Delta\)CKP ~ \(\Delta\)PHB (g.g)\(\Rightarrow\frac{CK}{PH}=\frac{CP}{PB}\) (2)
Từ (1) và (2) => \(\frac{S_{CMP}}{S_{BNP}}=\frac{CP}{PB}\). Mà \(\frac{CP}{PB}=\frac{CM}{MA}\)(ĐL Thales) \(\Rightarrow\frac{S_{CMP}}{S_{BNP}}=\frac{CM}{MA}\)(*)
Tương tự: \(\frac{S_{BNP}}{S_{AMN}}=\frac{NF}{AE}\). \(\Delta\)AEN ~ \(\Delta\)NFB (g.g) => \(\frac{NF}{AE}=\frac{BN}{NA}\)
\(\Rightarrow\frac{S_{BNP}}{S_{AMN}}=\frac{BN}{NA}=\frac{CM}{MA}\)(ĐL Thales) (**)
Từ (*) và (**) suy ra \(\frac{S_{CMP}}{S_{BNP}}=\frac{S_{BNP}}{S_{AMN}}\Rightarrow\left(S_{BNP}\right)^2=S_{AMN}.S_{CMP}\) (đpcm).
a) trong tam giác ADC có AC=CD(gt)
=> tam giác ADC cân ( dhnb)
Mà CM là trung tuyến(M là trung điểm)
=>CM vuông góc với AD
=> GÓC CMD=90 độ
Xét tam giác HAD và tam giác MCD có
góc AHD= góc CMD (=90 độ)
góc ADC: chung
=> tam giác HAD đồng dạng với tam giác MCD
b, tam giác HAD đồng dạng vs tam giác MCD
=>MD/HD=CD/AD
=>MD.AD=HD.CD
=>MD.1/2MD=HD.CD
=>MD^2/2=DH.CD
Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i: Đoạn thẳng [B, A] Đoạn thẳng l: Đoạn thẳng [A, M] Đoạn thẳng n: Đoạn thẳng [B, D] Đoạn thẳng p: Đoạn thẳng [C, E] Đoạn thẳng q: Đoạn thẳng [D, E] Đoạn thẳng r: Đoạn thẳng [D, M] Đoạn thẳng s: Đoạn thẳng [M, E] Đoạn thẳng a: Đoạn thẳng [A, H] A = (-0.88, 1.82) A = (-0.88, 1.82) A = (-0.88, 1.82) C = (8.6, 1.86) C = (8.6, 1.86) C = (8.6, 1.86) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm M: Điểm trên h Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm D: Giao điểm của j, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm E: Giao điểm của k, m Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h Điểm H: Giao điểm của t, h
a. Ta thấy \(\widehat{DAB}=\widehat{MAC}\) (Cùng phụ với góc \(\widehat{BAM}\)); \(\widehat{DBA}=\widehat{MCA}\)(Cùng phụ với góc \(\widehat{ABM}\))
Vậy nên \(\Delta CAM\sim\Delta BAD\left(g-g\right)\)
b. Do \(\Delta CAM\sim\Delta BAD\left(cma\right)\Rightarrow\frac{AM}{AD}=\frac{AC}{AB}\Rightarrow\frac{AM}{AC}=\frac{AD}{AB}\)
Mà \(\widehat{DAM}=\widehat{BAC}=90^o\Rightarrow\Delta ADM\sim\Delta ABC\left(c-g-c\right)\)
c. Ta thấy \(\widehat{ABM}=\widehat{ACE}\) (Cùng phụ với góc \(\widehat{ACM}\)); \(\widehat{BAM}=\widehat{CAE}\)(Cùng phụ với góc \(\widehat{MAC}\))
Vậy nên \(\Delta BAM\sim\Delta CAE\left(g-g\right)\Rightarrow\frac{AE}{AM}=\frac{AC}{AB}\Rightarrow\frac{AE}{AC}=\frac{AM}{AB}\)
Từ câu b: \(\frac{AD}{AB}=\frac{AM}{AC}\)và ta vừa cm \(\frac{AE}{AC}=\frac{AM}{AB}\Rightarrow\frac{AD.AE}{AB.AC}=\frac{AM^2}{AC.AB}\Rightarrow AD.AE=AM^2\)
d. Do \(AD.AE=AM^2;\widehat{DAM}=\widehat{MAE}=90^o\Rightarrow\Delta DAM\sim\Delta MAE\left(c-g-c\right)\)
\(\Rightarrow\widehat{DMA}=\widehat{MEA}\Rightarrow\widehat{DME}=90^o\). Lại có \(\widehat{EDM}=\widehat{ABC}\Rightarrow\Delta ABC\sim\Delta MDE\left(g-g\right)\)
Để \(\frac{S_{ABC}}{S_{MDE}}=\frac{1}{4}\Rightarrow\) tỉ số đồng dạng \(k=\frac{1}{2}.\)
Gọi AH là đường cao của tam giác ABC, khi đó AM = 2AH \(\Rightarrow\widehat{AMB}=30^o.\)
Vậy M là một điểm thuộc AB sao cho \(\widehat{AMB}=30^o.\)