Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Ceva:
\(\frac{BM}{MA}.\frac{AN}{NC}.\frac{CP}{PB}=1\Rightarrow2.1.\frac{CP}{PB}=1\Rightarrow BP=2CP\)
\(\Rightarrow BP=2\left(BC-BP\right)\Rightarrow BC=\frac{3}{2}BP\Rightarrow\overrightarrow{BC}=-\frac{3}{2}\overrightarrow{PB}\)
Áp dụng Menelaus cho tam giác MBC:
\(\frac{IM}{IC}.\frac{CP}{PB}.\frac{BA}{AM}=1\Rightarrow\frac{IM}{IC}.\frac{1}{2}.3=1\Rightarrow CI=\frac{3}{2}IM\)
\(xy=-\frac{9}{4}\)
Nguyễn Việt Lâm: mk chưa hk mấy đli này, bn có cách giải nào khác k?
Áp dụng định lý Menelaus:
\(\frac{BM}{MA}.\frac{AN}{NC}.\frac{CP}{PB}=1\)
\(\Leftrightarrow\frac{2}{1}.\frac{2}{1}.\frac{CP}{PB}=1\Rightarrow\frac{CP}{PB}=\frac{1}{4}\)
\(\Rightarrow4CP=BP=BC+CP\)
\(\Rightarrow3CP=BC\Rightarrow\overrightarrow{BC}=-3\overrightarrow{PC}\)
Dựa theo đề bài ta có hình vẽ: A B C M N I
Ta có: MA = 2MB; BN = 5CN => BN = 5/6 BC
Có \(\overrightarrow{AN}=\overrightarrow{AB}+\overrightarrow{BN}=-\overrightarrow{BA}+\frac{5}{6}\overrightarrow{BC}\)
Áp dụng định lí menelaus cho tam giác ABN
\(\frac{MA}{MB}.\frac{CB}{CN}.\frac{IN}{IA}=1\)=> \(\frac{2}{1}.\frac{6}{1}.\frac{IN}{IA}=1\Rightarrow IA=12IN\)=> \(\overrightarrow{AI}=\frac{12}{13}\overrightarrow{AN}\)
Ta có: \(\overrightarrow{BI}=\overrightarrow{BA}+\overrightarrow{AI}=\overrightarrow{BA}+\frac{12}{13}\overrightarrow{AN}=\overrightarrow{BA}+\frac{12}{13}\left(-\overrightarrow{BA}+\frac{5}{6}\overrightarrow{BC}\right)\)rút gọn tính tiếp nhé