Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi K là trung điểm DC ; G là giao điểm AM và BD
tam giác BCD có MK là đtbinh => MK // BD
Tam giác AMK có : D là trung điểm AK và GD// MK
=> G là trung điểm AM => BD đi qua trung điểm AM
CMTT : CE cũng đi qua trung điểm AM
=> đpcm
Gọi Q là trung điểm của DC ; P là trung điểm của BE
+)Gọi O là giao điểm của AM và CE
Ta có : M là trung điểm của BC ; P là trung điểm của BE
\(\implies\) MP là đường trung bình của tam giác BEC
\(\implies\) MP song song với EC
\(\implies\) MP song song với EO
Mà E là trung điểm của AP
\(\implies\) EO là đường trung bình của tam giác APM
\(\implies\) O là trung điểm của AM ( 1 )
+)Gọi O, là giao điểm của AM và BD
Ta có : M là trung điểm của BC ; Q là trung điểm của DC
\(\implies\) MQ là đường trung bình của tam giác BDC
\(\implies\) MQ song song với BD
\(\implies\) MQ song song với O,D
Mà D là trung điểm của AQ
\(\implies\) O,D là đường trung bình của tam giác APQ
\(\implies\) O, là trung điểm của AM ( 2 )
Từ ( 1 ) ; ( 2 )
\(\implies\) O \(\equiv\) O,
\(\implies\) 3 đường thẳng AM ; CE ; BD đồng quy tại 1 điểm
\(\implies\) đpcm
MA=MB; NB=NC => MN là đường trung bình của tg ABC => MN//AC (1)
Xét tg ACD và tg END có
^ADC = ^EDN (góc đối đỉnh)
CN=BC/2; CD=BC/4 => CD=CN/2 hay DC=DN
DA=DE
=> tg ACD = tg END (c.g.c) => ^DAC = ^DEN => EN//AC (2)
Từ (1) và (2) => MN trùng EN (Từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 dt // với đường thẳng đã cho)
=> M;N;E thẳng hàng
CẬU ƠI LỚP 7 ĐÃ HỌC ĐƯỜNG TRUNG BÌNH đâu , bài này tớ có cách khác
A B C D E M N
A) NỐI B VÀ E
TA CÓ
\(DC=\frac{1}{4}BC\left(1\right)\)
MÀ \(NC=\frac{1}{2}BC\)
THAY \(ND+DC=\frac{1}{2}BC\)
THAY (1) VÀO TA CÓ
\(ND+\frac{1}{4}BC=\frac{1}{2}BC\)
\(\Leftrightarrow ND=\frac{1}{2}BC-\frac{1}{4}BC\)
\(\Leftrightarrow ND=BC\left(\frac{1}{2}-\frac{1}{4}\right)\)
\(\Leftrightarrow ND=\frac{1}{4}BC\)
MÀ \(DC=\frac{1}{4}BC\)
\(\Rightarrow ND=DC\left(2\right)\)
TA LẠI CÓ \(BN=NC\left(gt\right)\)
THAY \(BN=ND+DC\)
THAY (2) VÀO TA CÓ
\(BN=2ND\)
MÀ \(BN+ND=BD\)
THAY \(2ND+ND=BD\)
\(\Leftrightarrow3ND=BD\)
\(\Leftrightarrow ND=\frac{1}{3}BD\)
VÌ AD = DE => BD LÀ ĐƯỜNG TRUNG TUYẾN THỨ NHẤT CỦA \(\Delta ABE\)
MÀ \(ND=\frac{1}{3}BD\)
=> N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)
VÌ AM=BM
=> EM LÀ ĐƯỜNG TRUNG TUYẾN THỨ 2 CỦA \(\Delta ABE\)
MÀ N LÀ TRỌNG TÂM CỦA \(\Delta ABE\)
=> EM BẮT BUỘT ĐI QUA N
=> BA ĐIỂM E,M,N THẲNG HÀNG (ĐPCM)
A B C M E D H K
Gọi H là trung điểm của BD. K là trung điểm của CE.
M là trung điểm của BC, H là trung điểm của BD => HM // CD (T/c đường trung bình)
Xét tam giác AHM: D là trung điểm của AH, HM // DO => O là trung điểm của AM
=> BE đi qua trung điểm của AM (1)
Tương tự: MK // BE; E là trung điểm của K => O là trung điểm của AM
=> CD đi qua trung điểm của AM (2)
Từ (1) và (2) => AM,BE,CD đồng quy (đpcm)
Gọi Q là trung điểm của DC ; P là trung điểm của BE
+)Gọi O là giao điểm của AM và CE
Ta có : M là trung điểm của BC ; P là trung điểm của BE
\(\implies\) MP là đường trung bình của tam giác BEC
\(\implies\) MP song song với EC
\(\implies\) MP song song với EO
Mà E là trung điểm của AP
\(\implies\) EO là đường trung bình của tam giác APM
\(\implies\) O là trung điểm của AM ( 1 )
+)Gọi O, là giao điểm của AM và BD
Ta có : M là trung điểm của BC ; Q là trung điểm của DC
\(\implies\) MQ là đường trung bình của tam giác BDC
\(\implies\) MQ song song với BD
\(\implies\) MQ song song với O,D
Mà D là trung điểm của AQ
\(\implies\) O,D là đường trung bình của tam giác APQ
\(\implies\) O, là trung điểm của AM ( 2 )
Từ ( 1 ) ; ( 2 )
\(\implies\) O \(\equiv\) O,
\(\implies\) 3 đường thẳng AM ; CE ; BD đồng quy tại 1 điểm
\(\implies\) đpcm