Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}=\frac{AD-ID}{ID}+\frac{BE-IE}{IE}+\frac{FC-FI}{FI}\)
=\(\frac{AD}{ID}+\frac{BE}{IE}+\frac{FC}{FI}-3\)
(từ A và I kẻ 2 đường thẳngAH,IK vuông góc vs BC(H,KϵBC) →áp dụng hệ quả định lý tales :\(\frac{AD}{ID}=\frac{AH}{IK}\)mà AH và IK là 2 đường cao của 2 Δ có chung đáy là ΔABCvà ΔBIC→\(\frac{AH}{IK}=\frac{SABC}{SBIC}\) ;làm tương tự vs các cạnh còn lại ,ta có:\(\frac{BE}{IE}=\frac{SABC}{SAIC};\frac{FC}{FI}=\frac{SABC}{SAIB}\))(cái này làm ngoài nháp thôi ,típ tục nèo)
=\(\frac{SABC}{SBIC}+\frac{SABC}{SAIC}+\frac{SABC}{SAIB}-3\)
=\(\frac{SAIB+SAIC+SBIC}{SBIC}+\frac{SAIB+SAIC+SBIC}{SAIC}+\frac{SAIB+SAIC+SBIC}{SAIB}-3\)
=\(3+\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}+\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}+\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}-3\)
Áp dụng BĐT coosshi cho 2 số dương ,ta có:
\(\frac{SAIB}{SBIC}+\frac{SBIC}{SAIB}\ge2\sqrt{\frac{SAIB}{SBIC}.\frac{SBIC}{SAIB}=2}\)tương tự ta có:\(\frac{SAIB}{SAIC}+\frac{SAIC}{SAIB}\ge2;\frac{SAIC}{SBIC}+\frac{SBIC}{SAIC}\ge2\)
vậy \(\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{FI}\ge3+2+2+2-3=6\left(đfcm\right)\)
\(\left(\frac{ID}{AD}+\frac{IE}{BE}+\frac{IF}{CF}\right)\left(\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\right)\ge\left(\sqrt{\frac{ID}{AD}}\sqrt{\frac{AD}{ID}}+\sqrt{\frac{IE}{BE}}\sqrt{\frac{BE}{IE}}+\sqrt{\frac{IF}{CF}}\sqrt{\frac{CF}{IF}}\right)^2\)
\(\Rightarrow\frac{AD}{ID}+\frac{BE}{IE}+\frac{CF}{IF}\ge\left(1+1+1\right)^2\Leftrightarrow\frac{IA+ID}{ID}+\frac{IB+IE}{IE}+\frac{IC+IF}{IF}\ge9\)
\(\Rightarrow\frac{IA}{ID}+\frac{IB}{IE}+\frac{IC}{IF}\ge6\)
Bạn ko hiểu chỗ nào thì hỏi mình nhé!
a) Xét ΔABC vuông tại A có HB là hình chiếu của AB trên BC(AH là đường cao ứng với cạnh BC)
nên \(AB^2=HB\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Xét ΔABC vuông tại A có HC là hình chiếu của AC trên BC(AH là đường cao ứng với cạnh BC)
nên \(AC^2=HC\cdot BC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Ta có: \(\frac{AB^2}{AC^2}=\frac{HB\cdot BC}{HC\cdot BC}=\frac{HB}{HC}\)(đpcm)
b) Xét ΔAHB vuông tại H có BE là hình chiếu của HB trên AB(HE là đường cao ứng với cạnh AB)
nên \(HB^2=BE\cdot AB\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Xét ΔAHC vuông tại H có CF là hình chiếu của CH trên AC(HF là đường cao ứng với cạnh AC)
nên \(HC^2=CF\cdot AC\)(định lí 1 về hệ thức lượng trong tam giác vuông)
Ta có: \(\frac{HB}{HC}=\frac{AB^2}{AC^2}\)
\(\Leftrightarrow\left(\frac{HB}{HC}\right)^2=\left(\frac{AB^2}{AC^2}\right)^2=\frac{AB^4}{AC^4}\)
hay \(\frac{HB^2}{HC^2}=\frac{AB^4}{AC^4}\)
mà \(\frac{HB^2}{HC^2}=\frac{BE\cdot AB}{CF\cdot AC}\)
nên \(\frac{AB^4}{AC^4}=\frac{BE\cdot AB}{CF\cdot AC}\)
\(\Leftrightarrow\frac{AB^4}{AC^4}=\frac{BE}{CF}\cdot\frac{AB}{AC}\)
hay \(\frac{BE}{CF}=\frac{AB^4}{AC^4}:\frac{AB}{AC}=\frac{AB^4}{AC^4}\cdot\frac{AC}{AB}=\frac{AB^3}{AC^3}\)(đpcm)