K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2022

Gọi M,N lần lượt là trung điểm GC, AB và M', N' lần lượt là hình chiếu của M và N trên d.

Ta có G là trọng tâm của ΔABCΔABC nên ⇒GM=MC=NG⇒GM=MC=NG

Từ hình thang GG'CC': GM=MC ,MM′//GG′(⊥d)

Do đó MM′ là đường trung bình của hình thang GG′CC′

⇒2MM′=GG′+CC′   1

Tương tự với hình thang BB′AA′ ta được 2NN′=BB′+AA′(2)

và hình thang NN′M′M được 2GG′=NN′+MM′   3

Từ (1),(2),(3) ta được

⇔4GG′−GG′=CC′+BB′+AA′

⇔3GG′=CC′+BB′+AA′(đpcm)

24 tháng 1 2017

a, dễ c/m SHBC/SABC=HA'/AA' 

               SHAB/SABC=HC'/BB'

              SHAC/SABC=HB'/BB'

Cộng theo vế các đẳg thức trên ,ta có đpcm

b, Áp dụng t/c đg phân giác vào các tam giác ABC,ABI,AIC ta có :

BI/IC=AB/AC , AN/NB=AI/BI,  CM/MA=IC/AI

nhân từng vế rồi rút gọn BI/IC.AN/NB.CM/MA=1 => AN.NI.CM=BN.IC.AM 

24 tháng 1 2017

c, mk ko làm đc, bn có thể nhờ ng khác

18 tháng 3 2020

Câu c) Các bạn tự vẽ hình nhé mình chỉ giải thôi:

Kẻ tia Cx vuông góc với CC'. Vẽ D là điểm đối xứng với A qua Cx. AD giao Cx tại I.

C/m C'AIC là hcn=> Góc BAD = 90 độ

=> CC'= AI

Có: D đối xứng với D qua Cx, I là giao điểm của AD và Cx

=> I là trung điểm của AD=> 2AI=AD

=> 2CC'=AD.

=> AB2+ AD2= BD2( Đlí PTG)

Ta có: Với 3 điểm B,C,D thì sẽ luôn có:  (BD+CD)2>= BD2

Có: AB2+ AD2=BD2

=> (BD+CD)2>= AB2+ AD2

=>  (BD+CD)2>= AB2+ (2CC')2

=> (BD+CD)2>= AB2+ 4CC'

=>  (BD+CD)2- AB2>= 4CC'(1)

CMTT=> (AB+AC)2-BC2>= 4AA'(2)

            và (AB+BC)2- AC2>= 4BB'(3)

Từ (1),(2) và (3) ta chứng minh đc:

(AB+BC+AC)2>= 4(AA'2+BB'2+CC'2)

=> GTNN bằng 4 <=> BC=AC; AC=AB; AB=BC<=> AB=BC=AC

=> GTNN là 4 khi tam giác ABC đều.

19 tháng 4 2019

A B C A' B' C' H I M N

a) Ta có : \(\frac{HA'}{AA'}=\frac{S_{HA'C}}{S_{AA'C}}=\frac{S_{BHA'}}{S_{AA'B}}=\frac{S_{HA'C}+S_{BHA'}}{S_{AA'B}+S_{AA'C}}=\frac{S_{BHC}}{S_{ABC}}\)

Tương tự : \(\frac{HB'}{BB'}=\frac{S_{AHC}}{S_{ABC}};\frac{HC'}{CC'}=\frac{S_{AHB}}{S_{ABC}}\)

\(\Rightarrow\frac{HA'}{AA'}+\frac{HB'}{BB'}+\frac{HC'}{CC'}=1\)

b) Ta có : \(\frac{AN}{BN}=\frac{AI}{BI}\)

mà \(\frac{AI}{CI}=\frac{AM}{BM}\Rightarrow AI=\frac{AM}{CM}.CI\)

\(\Rightarrow\frac{AN}{BN}=\frac{AM}{CM}.\frac{CI}{BI}\Rightarrow AN.CM.BI=BN.AM.CI\)

19 tháng 4 2019

A B C A' H I I x D

vẽ Cx \(\perp\)CC' ; vẽ D đối xứng với A qua Cx ; DA  giao điểm Cx tại I

\(\Rightarrow\)CD = AC và tam giác C'CIA là hình chữ nhật

\(\Rightarrow\)CC' = AI = ID ; \(\widehat{BAD}=90^o\)

Ta có BD \(\le\)BC + CD . Dấu " = " xảy ra \(\Leftrightarrow\)\(\Delta BAD\)vuông tại A \(\Rightarrow\)AC = BC

\(\Rightarrow\)BD2 \(\le\)( BC + CD )2 

\(\Delta BAD\)vuông tại A \(\Rightarrow\)BD2 = AB2 + AD2

\(\Rightarrow\)AB2 + AD2 \(\le\)( BC + AC )2 

\(\Rightarrow\)AD2 \(\le\)( BC + AC )2 - AB2

\(\Rightarrow\)4CC'2 \(\le\)( BC + AC )2 - AB2   . Dấu " = " xảy ra \(\Leftrightarrow\)AC = BC

tương tự , 4BB'2 \(\le\) ( AB + BC )2 - AC2    Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC

4AA'2 \(\le\)( AB + AC )2 - BC2   Dấu " = " xảy ra \(\Leftrightarrow\)AB = AC

Suy ra : \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\)

\(\Rightarrow\)\(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)

Dấu " = " xảy ra \(\Leftrightarrow\)AB = BC = AC hay tam giác ABC đều

 
18 tháng 4 2016

. vẽ Cx vuông góc với CC' tại C

. Vẽ D là điểm đối xứng của A qua Cx, cắt Cx tại E

.Xét\(\Delta ACD\) có: CE vừa là đường cao, vừa là trung tuyến nên \(\Delta ACD\) cân tại C => AC = CD

. Ta có tứ giác AECC' là hình chữ nhật ( Có 3 góc bằng 90 độ)

. => \(CC'=AE=\frac{1}{2}AD\) 

. Xét ba điểm B, C, D, ta có: \(BD\le BC+CD\)

. Áp dụng Đl Pitago vào tam giác vuông ABD, có:

\(AB^2+AD^2=BD^2\) => \(AB^2+\left(2CC'^2\right)\le\left(BC+CD\right)^2\) 

. <=>\(AB^2+4CC'^2\le\left(BC+AC\right)^2\) 

. <=> \(4CC'^2\le\left(BC+AC\right)^2-AB^2\) \(\left(1\right)\)

. C/m tương tự, ta có: \(4BB'\le\left(AB+BC\right)^2-AC^2\) \(\left(2\right)\)

\(4AA'\le\left(AB+AC\right)^2-BC^2\) \(\left(3\right)\)

. Từ \(\left(1\right)\) , \(\left(2\right)\) và \(\left(3\right)\) suy ra: \(4\left(AA'^2+BB'^2+CC'^2\right)\le\left(AB+BC+AC\right)^2\) (Phân tích mấy cái trên kia là ra)

. Suy ra: \(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\ge4\)

. Vậy GTNN của \(\frac{\left(AB+BC+AC\right)^2}{AA'^2+BB'^2+CC'^2}\) là 4 khi AB=BC=AC hay tam giác ABC đều

17 tháng 4 2016

các bn vẽ hình cho mk luôn nha!