K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
9 tháng 10 2016
Chọn tam giác BMC làm trung gian. Ta có : Mà Do đó : Tương tự ta chứng minh được Suy ra BN = BC ⇒ = 2 3 SBMN 2 3 SBMC BM = AB ⇒ = 1 3 SBMC 1 3 SABC SBMN = . = 2 3 1 3 SABC 2 9 SABC SBMN = SPNC = SAMP = 2 9 SABC SMNP = SABC − 3SBMN = SABC − 3. = 2 9 SABC 1 3 SAB
k không tui bắng hết
9 tháng 7 2017
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
Ta có : \(2MN+2NP+2MP=116\Rightarrow2\left(MN+NP+MP\right)=116\)
\(\Rightarrow MN+NP+MP=116\div2=58\)
Vì tam giác \(ABC=\)tam giác \(MNP\)nên ta có :
\(AB=MN\) \(BC=NP\) và \(AC=MP\)từ đó ta suy ra
\(AB+BC+AC=58\). Vì \(AB;BC;AC\)lần lượt tỉ lệ thuận với 2 ; 3 ; 4
\(\Rightarrow\frac{AB}{2}=\frac{BC}{3}=\frac{AC}{4}\). Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{AB}{2}=\frac{BC}{3}=\frac{AC}{4}=\frac{AB+BC+AC}{2+3+4}=\frac{58}{9}\)
\(\Rightarrow\hept{\begin{cases}\frac{AB}{2}=\frac{58}{9}\Leftrightarrow AB=\frac{116}{9}\\\frac{BC}{3}=\frac{58}{9}\Leftrightarrow BC=\frac{58}{3}\\\frac{AC}{4}=\frac{58}{9}\Leftrightarrow AC=\frac{232}{9}=NP\end{cases}}\) Vậy ta đã tìm được số đo của AB ; AC và NP