K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2023

Tứ giác `DACM` có: 

`DA` // `MC`

`DM` // `AC`

`=>` Tứ giác `DACM` là hình bình hành

`=> hat{D} = hat{C}; DA = MC`

Tương tự: 

Tứ giác `AEMB` là hình bình hành có `hat{B} = hat{E}; AE = BM`

Ta có: 

* `DE = DA + AE`

* `BC = BM + MC`

mà `DA = MC; AE = BM`

`=> DE = MC`

Xét tam giác `MDE` và tam giác `ACB` có: 

`hat{B} = hat{E}`

` DE = MC`

`hat{D} = hat{C}`

`=>` tam giác `MDE =` tam giác `ACB` (góc - cạnh - góc)

 

13 tháng 4 2020

Ặc, vẽ câu a không vẽ được câu b: :))

Chương II : Tam giác

13 tháng 4 2020

:v

16 tháng 3 2018

Hình thì bạn tự vẽ nhabanhqua

a, Có góc ABC + ABM=180 độ (kề bù)

góc ACB + ACN=180 độ (kề bù)

mà góc ABC=ACB (tam giác ABC cân tại A)

=>góc ABM=ACN

Xét tam giác ABM và tam giác ACN có:

BM=CN (GT)

AB=AC (tam giác ABC cân tại A)

góc ABM=ACN

=>tam giác ABM = tam giác ACN (c.g.c)

=>AM=AN

b, Xét tam giác HBM và tam giác KCN có:

BHM=CKN (=90 độ)

MB=CN

góc HMB=KNC ( do tam giác ABM=ACN)

=>tam giác HBM = tam giác KCN (cạnh huyền-góc nhọn)

=>BH=CK

c, Có góc HBM=OBC (đối đỉnh)

góc KCN=OCB (đối đỉnh )

mà góc HBM=KCN (do tam giác HBM = tam giác KCN)

=>góc OBC=OCB =>tam giác OBC cân tại O

CÓ GÌ CHƯA HIỂU CÓ BẢO MKleuleuHỌC TỐTok

7 tháng 12 2018

1)Các đường thẳng EM và MD cắt AB và AC lần lượt là K và H.
Kẻ đường thẳng EM,Ta có Vì EC//KM ta có HAMˆHAM^=AMEˆAME^(1)
Vì AB//MD=>KAMˆKAM^=AMDˆAMD^(2)
BACˆBAC^=KAMˆKAM^+HAMˆHAM^(3)
tiếp KMDˆKMD^=KMAˆKMA^+AMDˆAMD^(4)
Từ (1),(2),(3) và (4)=>BACˆBAC^=EMDˆEMD^
Kẻ D với B.Xét tam giác ABD và tam giác MDB có:
DB là cạnh chung
MDBˆMDB^=DBAˆDBA^(vì MD//AB)
ADBˆADB^=DBMˆDBM^(vì xy//BC)
=>Tam giác ABD=Tam giác MDB(g.c.g)
=>DM=AB.
Kẻ E với C.Xét tam giác AEM và tam giác MCA có:
AM là cạnh chung
ACEˆACE^=CAMˆCAM^)(vì ME//AC)
EAMˆEAM^=AMCˆAMC^(vì xy//BC)
=>Tam giác AEM=Tam giác MCA(g.c.g)
=>ME=AC
Xét tam giác ABC và tam giác MDE có:
DM=AB(c/m trên)
ME=AC(c/m trên)
BACˆBAC^=EMDˆEMD^
=>Tam giác ABC=Tam giác MDE(c.g.c)
2)Thiếu điều kiện rồi.
Bài 6 mình sẽ bắt đầu bằng câu b nhé!
b)Vì MACˆMAC^+BAMˆBAM^=90o90o(gt)
MACˆMAC^+CAEˆCAE^=90o90o(gt)
Từ trên=>CAEˆCAE^= BAMˆBAM^
Xét tam giác ABM và tam giác ACE có:
AB=BC(gt)
AM=AE(gt)
CAEˆCAE^= BAMˆBAM^(c/m trên)
=>Tam giác ABM=Tam giác ACE(c.g.c)
=>EC=BM(hai cạnh tương ứng)
c)Ta có: MABˆMAB^+MACˆMAC^=90o90o(gt)
Ta lại có tiếp: MABˆMAB^+BADˆBAD^=90o90o(gt)
=>BADˆBAD^=MACˆMAC^
Xét tam giác ADB và tam giác AMC có:
AB=AC(gt)
DA=AM(gt)
BADˆBAD^=MACˆMAC^(c/m trên)
=>Tam giác ADB=Tam giác AMC(c.g.c)
=>DB=MC(hai cạnh tương ứng)
Ta có BM+MC=BC(do M nằm giữa B và C)
Mà BM=EC(c/m trên)
DB=MC(c/m trên)
=>EC+DB=BC
d)Vì Tam giác ABM=Tam giác ACE(c/m trên)
=>ACEˆACE^=B^B^=45o45o(Vì góc B là góc ở đáy của tam giác vuông cân BAC tại A)
Vậy Ta có C^C^+ACEˆACE^=BCEˆBCE^=90o90o.(1)
Vì Tam giác ADB=Tam giác AMC(c/m trên)
=>C^C^=DBAˆDBA^=45o45o
Vậy B^B^+DBAˆDBA^=DBCˆDBC^=90o90o(2)
Từ (1) và (2)=>BCEˆBCE^= DBCˆDBC^=90o90o vậy BCEˆBCE^+DBCˆDBC^=180o180o mà hai góc này nằm ở vị trí trong cùng phía =>DB//EC

18 tháng 8 2016

Nhận thấy (x,y,z) phải khác 0

Ta nhân các vế của các giả thiết với nhau : \(\left(xyz\right)^2=\frac{2.3.9}{5.7.13}=\frac{54}{455}\)

\(\Rightarrow x^2=\frac{54}{455}:\left(yz\right)^2=\frac{54}{455}:\frac{9}{49}=\frac{42}{65}\Rightarrow x=\pm\sqrt{\frac{42}{65}}\)

\(\Rightarrow y=\frac{2}{5}:x=\frac{2}{5}:\left(\pm\sqrt{\frac{42}{65}}\right)\)

Từ xz = 9/13 => z

18 tháng 8 2016

=> xy.yz.xz= \(\frac{2}{5}.\frac{3}{7}.\frac{9}{13}\)

\(\Rightarrow\left(x.y.z\right)^2=\frac{54}{455}\)

Ủa! Sao ko lm được

29 tháng 9 2017

xin lỗi , đề đây ạ

Tìm x , biết

a) 413:x4=6:0,3413:x4=6:0,3

b) |x+1|=4,5

18 tháng 6 2017

t cũng chịu

19 tháng 6 2017

tính 1 lần thôi nhé

a: Xét tứ giác AEMC có 

AE//MC

AC//ME

Do đó: AEMC là hình bình hành

Xét tứ giác ABMD có 

AD//BM

MD//AB

Do đó: ABMD là hình bình hành

Xét ΔABC và ΔMDE có 

AB=MD

BC=DE

AC=ME

Do đó: ΔABC=ΔMDE

b: Ta có: ABMD là hình bình hành

nên Hai đường chéo AM và BD cắt nhau tại trung điểm của mỗi đường(1)

Ta có: AEMC là hình bình hành

nên Hai đường chéo AM và CE cắt nhau tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AM,BD,CE đồng quy