K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 1

Bước 1: Sử dụng định lý phân giác Giả sử rằng 𝐴 𝐷 AD là phân giác trong tam giác 𝐴 𝐵 𝐶 ABC, cắt cạnh 𝐵 𝐶 BC tại điểm 𝐷 D. Theo định lý phân giác, ta có: 𝐵 𝐷 𝐷 𝐶 = 𝐴 𝐵 𝐴 𝐶 DC BD ​ = AC AB ​ Điều này nói rằng tỉ số đoạn 𝐵 𝐷 BD và 𝐷 𝐶 DC bằng tỉ số cạnh 𝐴 𝐵 AB và 𝐴 𝐶 AC. Bước 2: Sử dụng góc EAD = góc FAD Từ đề bài, ta có ∠ 𝐸 𝐴 𝐷 = ∠ 𝐹 𝐴 𝐷 ∠EAD=∠FAD. Điều này có nghĩa là các điểm 𝐸 E và 𝐹 F nằm trên các đoạn 𝐵 𝐷 BD và 𝐶 𝐷 CD, sao cho các tam giác 𝐴 𝐵 𝐸 ABE và 𝐴 𝐶 𝐹 ACF có các góc tại đỉnh 𝐴 A bằng nhau. Bước 3: Áp dụng định lý về tỉ số các đoạn thẳng Vì ∠ 𝐸 𝐴 𝐷 = ∠ 𝐹 𝐴 𝐷 ∠EAD=∠FAD, ta có thể áp dụng định lý tương tự như định lý phân giác, và nó dẫn đến sự tương ứng giữa các đoạn thẳng của tam giác 𝐴 𝐵 𝐸 ABE và 𝐴 𝐶 𝐹 ACF và các cạnh của tam giác 𝐴 𝐵 𝐶 ABC. Cụ thể, ta có: 𝐵 𝐸 𝐶 𝐸 = 𝐴 𝐵 𝐴 𝐶 v a ˋ 𝐵 𝐹 𝐶 𝐹 = 𝐴 𝐵 𝐴 𝐶 CE BE ​ = AC AB ​ v a ˋ CF BF ​ = AC AB ​ Bước 4: Kết luận Do đó, ta có: 𝐵 𝐸 𝐶 𝐸 ⋅ 𝐵 𝐹 𝐶 𝐹 = ( 𝐴 𝐵 𝐴 𝐶 ) 2 = 𝐴 𝐵 2 𝐴 𝐶 2 CE BE ​ ⋅ CF BF ​ =( AC AB ​ ) 2 = AC 2 AB 2 ​ Vậy ta đã chứng minh được rằng 𝐵 𝐸 𝐶 𝐸 ⋅ 𝐵 𝐹 𝐶 𝐹 = 𝐴 𝐵 2 𝐴 𝐶 2 CE BE ​ ⋅ CF BF ​ = AC 2 AB 2 ​ .

23 tháng 3 2016

mk làm đc rồi bạn càn mk gửi cho không

25 tháng 3 2016
Kẻ EH vuông góc với AB; FK vuông góc với AB; FM vuông góc với AC; EN vuông góc với AC (H;K thuộc AB và M;N thuộc AC). Từ D kẻ DI vuông góc với AB; DG vuông góc với AC (I thuộc AB; G thuộc AC). -Vì HE//DI => BE/BD= HE/ID (1). -Vì MF//DG => CF/CD= FM/DG (2). -Từ (1);(2) => BE/CF. CD/BD= HE/ID :FM/DG= HE/FM (Do DI=DG) (3). -Tam giác HAE đồng dạng với tam giác MAF (g.g) => HE/MF =AE/AF (4). -Từ (3);(4) => BE/CF. CD/BD= AE/AF (5). -Vì DI//KF => BD/BF= DI/KF (6). -Vì DG//EN => CD/CE= DG/EN (7). -Từ (6);(7) =>CD/CE :BD/BF= BF/CE. CD/BD= DG/EN: DI/KF= KF/EN (8). -Tam giác KAF đồng dạng với tam giác NAE (g.g) => KF/FEN= AF/AE (9). -Từ (8);(9) => BF/CE. CD/BD= AF/AE (10). -Lấy (5) nhân với (10), ta có: BE/CF. CD/BD. BF/CE. CD/BD= AE/AF. AF/AE= 1. => BE/CE. BF/CF. (CD/BD)^2= 1. Vì AD là phân giác của góc BAC => CD/BD= AC/AB => (CD/BD)^2= (AC/AB)^2. -Từ 2 điều trên => BE/CE. BF/CF. (AC/AB)^2= 1. => BE/CE. BF/CF= (AB/AC)^2 (đpcm).
 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
1 tháng 2 2018

Câu hỏi của Bảo Châu Trần - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo lời giải tại đây nhé.

18 tháng 4 2018

Bài 5:
Cho ABC vuông tại A, kẻ phân giác BM ( M AC), trên cạnh BC
lấy điểm E sao cho BE = AB
a) Chứng minh 2 tam giác BAM BEM .
b) Gọi F là giao điểm của đường thẳng ME và đường thẳng AB.
Chứng minh: FM = MC.
c) Chứng minh: AM < MC
d) Chứng minh AE // FC.