Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt AB=c, AC=b, BC=a
ta có:
\(\frac{EC}{AE}=\frac{BC}{AB}\)(vì BE là phân giác goc B của tam giác ABC)
\(\Leftrightarrow\frac{EC}{AC-EC}=\frac{BC}{AB}hay\frac{EC}{b-EC}=\frac{a}{c}\Rightarrow EC.c=ab-a.EC\)
\(\Leftrightarrow EC.c+a.EC=ab\Leftrightarrow EC\left(a+c\right)=ab\Rightarrow EC=\frac{ab}{a+c}\)
\(\frac{BF}{ÀF}=\frac{BC}{AC}\) (vì CF là phân giác góc C của tam giác ABC)
\(\Leftrightarrow\frac{BF}{AB-BF}=\frac{BC}{AC}hay\frac{BF}{c-BF}=\frac{a}{b}\Rightarrow b.BF=ac-a.BF\Leftrightarrow b.BF+a.BF=ac\Leftrightarrow BF\left(a+b\right)=ac\Rightarrow BF=\frac{ac}{a+b}\)
lại có:
\(\frac{OB}{OE}=\frac{BC}{EC}\) (vì CO là phân giác góc C của tam giác CEB)
\(\Rightarrow\frac{OB}{OB+OE}=\frac{BC}{BC+EC}hay\frac{OB}{BE}=\frac{a}{a+\frac{ab}{a+c}}=\frac{a}{\frac{a\left(a+c\right)+ab}{a+c}}=\frac{a\left(a+c\right)}{a\left(a+b+c\right)}=\frac{a+c}{a+b+c}\left(1\right)\)
\(\frac{OC}{OF}=\frac{BC}{BF}\)(BO là phân giác góc B của tam giác BFC)
\(\Rightarrow\frac{OC}{OF+OC}=\frac{BC}{BC+BF}\Leftrightarrow\frac{OC}{CF}=\frac{BC}{BC+CF}hay\frac{OC}{CF}\frac{a}{a+\frac{ac}{a+b}}=\frac{a}{\frac{a\left(a+b\right)+ac}{a+b}}=\frac{a\left(a+b\right)}{a\left(a+b+c\right)}\)\(=\frac{a+b}{a+b+c}\left(2\right)\)
nhân (1) và (2) vế theo vế ta được: \(\frac{OB}{BE}.\frac{OC}{CF}=\frac{a+c}{a+b+c}.\frac{a+b}{a+b+c}=\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b+c\right)^2}\)
theo đề bài thì \(\frac{OB}{BE}.\frac{OC}{CF}=\frac{1}{2}\)
nên: \(\frac{\left(a+c\right)\left(a+b\right)}{\left(a+b+c\right)^2}=\frac{1}{2}\)
=> 2(a+c)(a+b)=(a+b+c)2
\(\Leftrightarrow2\left(a^2+ac+bc+ab\right)=a^2+b^2+c^2+2ab+2ac+2bc\)
\(\Leftrightarrow2a^2+2ac+2bc+2ab=a^2+b^2+c^2+2ab+2bc+2ac\)
\(\Leftrightarrow a^2=b^2+c^2\) hay BC2=AB2+AC2 => tam giác ABC vuông tại A( theo định lí pytago đảo)
Đặt \(S_{AMB}=a;S_{BMC}=b;S_{CMA}=c\)
Ta có \(\frac{AM}{MA'}+\frac{BM}{MB'}+\frac{MC}{MC'}=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)=\(\frac{a}{b}+\frac{c}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}\ge6\)(cô-si)
Đặt BC = a; AC = b; AB = c
Áp dụng định lý Pytago vào \(\Delta ABC\)vuông tại A, ta có: \(a^2=b^2+c^2\)
\(\Rightarrow2a^2+2ab+2bc+2ca=a^2+b^2+c^2+2ab+2bc+2ca\)
\(\Rightarrow2\left(a+b\right)\left(a+c\right)=\left(a+b+c\right)^2\)
\(\Rightarrow\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b+c\right)^2}=\frac{1}{2}\)(1)
Áp dụng định lý về đường phân giác trong tam giác, ta có:
\(\frac{CE}{AE}=\frac{BC}{AB}=\frac{a}{c}\Rightarrow\frac{CE}{AE+CE}=\frac{a}{a+c}\Rightarrow\frac{CE}{b}=\frac{a}{a+c}\)
\(\Rightarrow CE=\frac{ab}{a+c}\)
Lại áp dụng định lý về đường phân giác trong tam giác, ta có:
\(\frac{BO}{OE}=\frac{BC}{CE}=\frac{a}{\frac{ab}{a+c}}=a.\frac{a+c}{ab}=\frac{a+c}{b}\)
\(\Rightarrow\frac{BO}{OE+BO}=\frac{a+c}{a+b+c}=\frac{BO}{BE}\)
Tương tự ta có: \(\frac{CO}{CF}=\frac{a+b}{a+b+c}\)
\(\Rightarrow\frac{BO}{BE}.\frac{CO}{CF}=\frac{a+c}{a+b+c}.\frac{a+b}{a+b+c}=\frac{\left(a+b\right)\left(a+c\right)}{\left(a+b+c\right)^2}\)(2)
Từ (1) và (2) suy ra \(\frac{BO}{BE}.\frac{CO}{CF}=\frac{1}{2}\left(đpcm\right)\)
Lời giải:
Ta có:
\(\frac{MB}{MC}=\frac{S_{BIM}}{S_{CIM}}=\frac{S_{BAM}}{S_{CAM}}=\frac{S_{BAM}-S_{BIM}}{S_{CAM}-S_{CIM}}=\frac{S_{BAI}}{S_{CAI}}\)
\(\frac{NC}{NA}=\frac{S_{BNC}}{S_{BAN}}=\frac{S_{CNI}}{S_{ANI}}=\frac{S_{BNC}-S_{CNI}}{S_{BAN}-S_{ANI}}=\frac{S_{BIC}}{S_{BAI}}\)
\(\frac{PA}{PB}=\frac{S_{PAC}}{S_{PBC}}=\frac{S_{PAI}}{S_{PBI}}=\frac{S_{PAC}-S_{PAI}}{S_{PBC}-S_{PBI}}=\frac{S_{PAI}}{S_{BIC}}\)
Nhân 3 đẳng thức với nhau:
\(\frac{MB}{MC}.\frac{NC}{NA}.\frac{PA}{PB}=1\) (đpcm)