
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Áp dụng tính chất đường phân giác trong tam giác ABC
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}\)
MÀ DC=2BD
\(\frac{\Rightarrow AB}{AC}=\frac{BD}{2BD}=\frac{1}{2}\Rightarrow AC=2AB\)
Chúc bạn học tốt
__________ T I C K nha __________

Xét tam giác ABC có
AD là tia phân giác
=> \(\dfrac{DB}{DC}=\dfrac{AB}{AC}\)(tính chất tia phân giác)
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{1}{2}\Rightarrow DC=2DB\)

tam giác ABC có AD là tia phan giác góc A
\(\Rightarrow\frac{AC}{AB}=\frac{DC}{DB}\)
MA \(DC=2DB\)
\(\Rightarrow\frac{AC}{AB}=\frac{2DB}{DB}=\frac{2}{1}\)
\(\Rightarrow AC=2AB\)
NẾU CÓ SAI BN THÔNG CẢM NHA
A B C D
Vì AD là đường phân giác nên \(\frac{AB}{AC}=\frac{BD}{CD}\)(tính chất đường phân giác)
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{CD}=\frac{BD}{2BD}=\frac{1}{2}\)
\(\Rightarrow AC=2AB\left(đpcm\right)\)

Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}=\dfrac{AB}{2\cdot AB}=\dfrac{1}{2}\)
hay DC=2DB

A B C D H E K I F
a) Xét t/giác HBA và t/giác ABC
có: \(\widehat{B}\):chung
\(\widehat{BHA}=\widehat{A}=90^0\)(gt)
=> t/giác HBA đồng dạng t/giác ABC (g.g)
b) Xét t/giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (định lí Pi - ta - go)
=> AC2 = BC2 - AB2 = 102 - 62 = 64
=> AC = 8 (cm)
Ta có: t/giác HBA đồng dạng t/giác ABC
=> HB/AB = AH/AC = AB/BC
hay HB/6 = AH/8 = 6/10 = 3/5
=> \(\hept{\begin{cases}HB=\frac{3}{5}.6=3,6\left(cm\right)\\AH=\frac{3}{5}.8=4,8\left(cm\right)\end{cases}}\)
c) Xét tứ giác AIHK có \(\widehat{A}=\widehat{AKH}=\widehat{AIH}=90^0\)
=> AIHK là HCN => \(\widehat{AIK}=\widehat{AHK}\)(cùng = \(\widehat{IKH}\)) (1)
Ta có: \(\widehat{AHK}+\widehat{KHC}=90^0\)(phụ nhau)
\(\widehat{KHC}+\widehat{C}=90^0\)(phụ nhau)
=> \(\widehat{AHK}=\widehat{C}\) (2)
Từ (1) và )2) => \(\widehat{AIK}=\widehat{C}\)
Xét t/giác AKI và t/giác ABC
có: \(\widehat{A}=90^0\): chung
\(\widehat{AIK}=\widehat{C}\)(cmt)
=> t/giác AKI đồng dạng t/giác ABC
=> AI/AC = AK/AB => AI.AB = AK.AC
d) Do AD là đường p/giác của t/giác ABC => \(\frac{AB}{AC}=\frac{BD}{DC}=\frac{BC-DC}{DC}=\frac{BC}{DC}-1\)
<=> \(\frac{10}{DC}-1=\frac{6}{8}\) <=> \(\frac{10}{DC}=\frac{7}{4}\) <=> \(DC=\frac{40}{7}\)(cm)
=> BD = 10 - 40/7 = 30/7 (cm)
DE là đường p/giác của t/giác ABD => \(\frac{AD}{BD}=\frac{AE}{EB}\)(t/c đg p/giác)
DF là đường p/giác của t/giác ADC => \(\frac{DC}{AD}=\frac{FC}{AF}\)
Khi đó: \(\frac{EA}{EB}\cdot\frac{DB}{DC}\cdot\frac{FC}{FA}=\frac{AD}{DB}\cdot\frac{AB}{AC}\cdot\frac{DC}{AD}=\frac{AB\cdot DC}{BD.AC}=\frac{6\cdot\frac{40}{7}}{8\cdot\frac{30}{7}}=1\) (ĐPCM)