Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , vẽ hình
xét \(\Delta BPH\) và \(\Delta CPK\) có
\(\widehat{BHP}=\widehat{CKP}=90^o\)
\(\widehat{HBP}=\widehat{KCP}\)
=> \(\Delta BPH\) đồng dạng với \(\Delta CPK\)
=> \(\frac{BP}{CP}=\frac{HP}{PH}\)
hay \(BP.KP=CP.HP\left(đpcm\right)\)
Xet 2 tam giác KPC và tam giac HPB
CÓ góc PKC=góc PHB
góc KPC=góc HPB(đ.đ)
suy ra tam giac KPC đồng dạng với tam giác HPB
Nên ta có: KP/HP=KC/HB=PC/PB
Suy ra KB.PB=PC.HP
Cho mk loi nhan xet nha
1) Làm được câu a chưa
a) Xét tam giác HPB và KPC có:
\(\widehat{ABP}=\widehat{ACP}\)
\(\widehat{H}=\widehat{K}=90^o\)
\(\Rightarrow\) Tam giác HPB đồng dạng với tam giác KCP
\(\Rightarrow BP.KP=CP.HP\)
b) Tam giác HBC vuông có D là trung điểm cạnh huyền BC
\(\Rightarrow HD=\frac{BC}{2}\)
Tương tự ta cũng có \(KD=\frac{BC}{2}\)
\(\Rightarrow DK=DH\left(đpcm\right)\)
2) Gọi O là tâm hình bình hành. Qua M kẻ đường thẳng song song BD cắt AC; AD theo thứ tự tại N; P => N là trung điểm MP. Qua K kẻ đường thẳng song song BD cắt AB tại Q. Không mất tính tổng quát giả thiết Q nằm giữa A và G, G nằm giữa Q và N .Ta có:
GQ/GN = KQ/MN
<=> GQ/GN = KQ/NP ( vì MN = NP)
<=> GQ/GN = AQ/AN ( vì KQ/NP = GN/AN)
<=> GQ/AQ = GN/AN
<=> (AG - AQ)/AQ = (AN - AG)/AN ( vì GQ = AG - AQ; GN = AN - AG)
<=> 1/AN + 1/AQ = 2/AG
<=> OA/AN + OA/AQ = 2.OA/AG
<=> AB/AM + AD/AK = AC/AG (đpcm) ( vì OA/AN = AB/AM; OA/AQ = AD/AK; AC = 2OA)
câu 1b bạn làm sai r, H,P,C có thẳng hàng đâu
còn câu 2 dòng thứ 6 sao ra dòng thứ 7 vậy bạn, AQ=GN hé.sao ra???
a/ Tứ giác AKDH có:
^BAC = ^AKD = ^AHD = 90° (GT).
=>AKDH là hình chữ nhật
b/ Áp dụng định lí Pythagoras vào ∆ABC vuông tại A có:
BC^2=AB^2+AC^2.
=>BC^2=9+16=25
=> BC = 5 (cm)
Xét ∆ABC vuông tại A có AD là đường trung tuyến.
=>AD = 1/2BC=2,5 (cm)
b/ Có:
DK vuông góc vs AB.
AB vuông góc vs AC.
=> DK // AC.
Xét ∆ABC có:
DK // AC, K thuộc AB.
D là trung điểm BC.
=> K là trung điểm AB (đ/l)
=> KD là đường trung bình ∆ABC
=> KD = 1/2AC=1,5(cm)
Có
S_(∆ABC)=1/2.KD.AB
=1/2.4.1,5
=2.1,5=3 (cm²)
Bài 6:
a: Xét tứ giác AKDH có
\(\widehat{AKD}=\widehat{AHD}=\widehat{KAH}=90^0\)
Do đó: AKDH là hình chữ nhật
b: Ta có: ΔABC vuông tại A
mà AD là đường trung tuyến
nên AD=BC/2=2,5(cm)
a. Tứ giác AKDH là hình chữ nhật , vì có góc \(DKA=KAH=DHA=90^o\)
b, áp dụng đl pytago vào tam giác vuông ABC có :
\(BC^2=AB^2+AC^2\Leftrightarrow BC=\sqrt{4^2+3^2}=5cm\)
vì AD là trung tuyến tam giác vuông ABC nên :
\(AD=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5cm\)
c,vì AKDH là hình chữ nhật nên : DH//KA
mà D là trung điểm BC
=>H là trung điểm AC
<=>AH=\(\dfrac{1}{2}AC=\dfrac{1}{2}.3=1,5cm\)
vì AH = 1,5 cm nên => KD cũng = 1,5cm (AKDH là hình chữ nhật)
\(S_{ABD}=\dfrac{1}{2}.AB.KD=\dfrac{1}{2}.4.1,5=3cm^2\)
a) xét tg ABC có :AD là tia phân giác=>DB/AB=DC/AC=>DB/DC=AB/AC,mà AB/AC=8/6=4/3=>DB/DC=4/3
b)xét tg AHB và tg CHA có: ^AHB=^CHA=9 , ^HAB=^HCA(cùng phụ vs CAH) =>tg AHB đ.dạng vs tg CHA (g.g)