K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Hình vẽ:(không chắc nó có hiện ra hay k bạn thông cảm)image.pngCâu a) 

Dễ chứng minh ATNO là tứ giác nội tiếp

Đồng thời MB=MC nên OM vuông góc BC hay OMNT là tứ giác nội tiếp

Suy ra: A,O,M,N,T cùng thuộc một đường tròn(đường kính OT)

Có OMNT là tứ giác nội tiếp suy ra: \(\widehat{BMN}=\widehat{TON}\)

Mà \(\widehat{TON}=\widehat{TAN}=\widehat{TNA}\)

Cho nên: \(\widehat{BMN}=\widehat{TNA}\)

Hơn nữa: \(\widehat{TNA}=\widehat{ACN}\)(cùng bằng một nửa số đo cung ABN)

\(\Rightarrow\widehat{BMN}=\widehat{ACN}\)

Xét tam giác BMN và tam giác ACN có: \(\hept{\begin{cases}\widehat{BMN}=\widehat{ACN}\\\widehat{MBN}=\widehat{CAN}\end{cases}}\)

Do đó: \(\Delta BMN~\Delta ACN\left(g.g\right)\)\(\Rightarrow\frac{BN}{AN}=\frac{MB}{AC}=\frac{MC}{AC}\)

Chứng minh tiếp \(\Delta ABN~\Delta AMC\left(c.g.c\right)\)từ tỉ số trên và \(\widehat{ANB}=\widehat{ACM}\)

Vậy \(\widehat{BAN}=\widehat{CAM}\)

___________________________________________________________________________________________________________

Câu b) Hình vẽ cho câu b): (không hiện ra thì bn thông cảm do paste từ GeoGebra ra)

image.png

Gọi giao DK cắt BF tại P

Ta có: \(\Delta TNB~\Delta TCN\)\(\Rightarrow\frac{TN}{TC}=\frac{NB}{CN}\)

Tương tự: \(\Delta TAB~\Delta TCA\)\(\Rightarrow\frac{TA}{TC}=\frac{AB}{AC}\)

Do TA=TN nên \(\frac{NB}{NC}=\frac{AB}{AC}\)(1)

Lại có: ADKC là tứ giác nội tiếp \(\Rightarrow\widehat{BNA}=\widehat{BCA}=\widehat{DKA}\Rightarrow BN//KP\)

\(\Delta FPD~\Delta NBA\Rightarrow\frac{PF}{NB}=\frac{PD}{AB}\)(2)(bn tự CM)

\(\Delta DBP~\Delta ANC\Rightarrow\frac{PB}{NC}=\frac{PD}{AC}\)(3)(bn tự CM)

Từ (1);(2) và (3) suy ra đpcm

P/s: Bài làm dài quá mik làm biếng không check lại nên có thể có sai sót nha.

27 tháng 3 2020

CCFCXD

ân tích và giải quyết: Tam giác ABC và đường tròn nội tiếp: Tam giác ABC là tam giác nhọn và có ba góc nhọn, tức là tất cả các góc trong tam giác đều nhỏ hơn 90°. Tam giác ABC nội tiếp một đường tròn với tâm O (đường tròn này gọi là đường tròn ngoại tiếp của tam giác ABC). Do đó, các điểm A, B, C nằm trên đường tròn này. Đường cao AD và CE: Đường cao AD từ đỉnh A vuông góc với BC, và đường cao CE từ đỉnh C vuông góc với AB. Các đường cao này có những tính chất đặc biệt như chúng đồng quy tại trực tâm của tam giác ABC. Tiếp tuyến tại A của (O) cắt BC tại M: Tiếp tuyến tại điểm A của đường tròn (O) cắt cạnh BC tại điểm M. Tính chất của tiếp tuyến cho ta rằng đoạn AM vuông góc với bán kính OA của đường tròn tại A. Tiếp tuyến thứ hai tại M cắt (O) tại N: Từ điểm M, ta kẻ tiếp tuyến thứ hai đến đường tròn (O), tiếp tuyến này cắt đường tròn tại N. Do tính chất của tiếp tuyến, ta có các đặc điểm quan trọng như AM = AN (do tính chất của tiếp tuyến với đường tròn). Vẽ CK vuông góc với AN tại K: Kẻ đoạn CK vuông góc với AN tại điểm K. Do CK vuông góc với AN, ta có những quan hệ đặc biệt giữa các điểm này. Chứng minh DK đi qua trung điểm của đoạn thẳng BE: Để chứng minh DK đi qua trung điểm của đoạn BE, ta cần sử dụng các tính chất của hình học phẳng, đặc biệt là các định lý liên quan đến đường cao, tiếp tuyến và trung điểm của đoạn thẳng. Cần chứng minh rằng DK chia đoạn BE thành hai đoạn bằng nhau, tức là DK đi qua trung điểm của BE. Điều này có thể được thực hiện bằng cách sử dụng các tính chất đối xứng của tam giác và các định lý về tiếp tuyến. Kết luận: Bằng cách sử dụng các tính chất hình học của tam giác, các đường cao, các tiếp tuyến và đối xứng trong tam giác nội tiếp, ta có thể chứng minh rằng DK đi qua trung điểm của đoạn BE. Đây là một bài toán phức tạp yêu cầu sự am hiểu về các định lý hình học cơ bản và nâng cao.

24 tháng 3 2020

khó quá bạn ơi 

2 tháng 11 2018

https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại...
Đọc tiếp

1. Cho \(\widehat{xOy}=90^0\). Lấy \(I\in Ox,K\in Oy\). Vẽ (I ; OK) cắt tia đối của IO tại M .Vẽ (K ; OI) cắt tia đối của KO tại N. (I) và (K) cắt nhau tại A và B. Tiếp tuyến tại M của (I) và tiếp tuyến tại N của (K) cắt nhau tại C. Chứng minh A,B,C thẳng hàng

2. Cho \(\Delta ABC\) nhọn, đường cao BD và CE cắt nhau tại H. Gọi I là trung điểm BC. Chứng minh ID, IE là tiếp tuyến của đường tròn ngoại tiếp \(\Delta ADE\)

3. Cho \(\Delta ABC\) vuông ở A nội tiếp (O) đường kính 5cm . Tiếp tuyến với đường tròn tại C cắt phân giác \(\widehat{ABC}\)tại K . BK cắt AC tại D và BD = 4cm . Tính độ dài BK .  

4. Cho (O ; R).Từ một điểm M ở ngoài (O), kẻ 2 tiếp tuyến MA,MB với (O) (A, B là các tiếp điểm). Qua A kẻ đường thẳng song song với MO cắt (O) tại E, ME cắt (O) tại F. MO cắt AF, AB lần lượt tại N, H. Chứng minh MN = NH

5. Cho \(\Delta ABC\)nhọn (AB < AC) nội tiếp đường tròn (O). Kẻ \(BD\perp AO\)(D nằm giữa A và O). Gọi M là trung điểm BC. AC cắt BD, MD lần lượt tại N, F. BD cắt (O) tại E. BF cắt AD tại H. Chứng minh DF // CE

0
6 tháng 12 2019

e mới hok lớp dưới 9 thôi