Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C M D E
a) Xét \(\Delta MBD\)và \(\Delta MAC\)
có: \(\widehat{MAC}=\widehat{MBD}\)( cùng chắn cung MC)
\(\widehat{BMD}=\widehat{AMC}\)( cung AB=cung AC vì AB=AC)
=> \(\Delta MBD\)~ \(\Delta MAC\)
b) Từ câu a)_
=> \(\frac{MB}{MA}=\frac{BD}{AC}\)(1)
\(\frac{MC}{MA}=\frac{MD}{MB}\)(2)
Dễ dàng chứng minh đc:
\(\Delta BDM~\Delta ADC\)
=> \(\frac{MD}{MB}=\frac{DC}{AC}\)(3)
Từ (1), (2), (3)
=> \(\frac{MB}{MA}+\frac{MC}{MA}=\frac{BD}{AC}+\frac{CD}{AC}=\frac{BC}{AC}\)\(=\frac{BC}{AB}\)
c) Lấy điểm E thuộc đoạn
mình nghĩ đề cho bổ sung là cho tam giác ABC đều nội tiếp đường tròn ( O ) vì mình đã từng làm rồi
lời giải :
A B C O M D
a) vì MD = MB nên \(\Delta MBD\)cân tại M
\(\widehat{BMD}=\widehat{BCA}=60^o\)( cùng chắn cung AB )
\(\Rightarrow\)\(\Delta MBD\)đều
b) Xét \(\Delta MBC\)và \(\Delta BDA\)có :
MB = BD ; BC = AB ; \(\widehat{MBC}=\widehat{DBA}\)( cùng cộng góc DBC bằng 60 độ )
\(\Rightarrow\Delta MBC=\Delta DBA\left(c.g.c\right)\)suy ra MC = AD
c) Mà MB = MD ( câu a )
nên MC + MB = MD + AD = MA
d) Ta có : MA là dây cung của ( O ; R ) \(\Rightarrow MA\le2R\)
\(\Rightarrow MB+MC+MA=2MA\le4R\)( không đổi )
Dấu " = " xảy ra \(\Leftrightarrow\)MA là đường kính hay M là điểm chính giữa của cung BC
a,xét tam giác DMB và DCA có:
góc BDM=ADC
góc BMD=ACD(góc nt cug chắn cug AB)
=>2 tam giác này đồng dạng vs nhau
a, xé tam giác MBD cà MAC có:
góc MBD=MAC( góc nt cug chắn cung MC)
góc BMA=AMC(chắn 2 cug bằng nhau)
=>2 tam giác này đồng dạng vs nhau