K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:
Gọi $M$ là trung điểm của $BC$. Do $BC$ cố định nên $M$ cố định.

Qua $G$ kẻ $GI\parallel AO$ với $I\in OM$

Theo Talet thì $\frac{GI}{AO}=\frac{MI}{MO}=\frac{GM}{MA}=\frac{1}{3}$
Mà $M,O$ cố định nên $I$ cố định.

$\frac{GI}{AO}=\frac{1}{3}\Rightarrow GI=\frac{AO}{3}=\frac{R}{3}$

Vậy trọng tâm $G$ luôn thuộc đường tròn $(I, \frac{R}{3})$ cố định.

 

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Hình vẽ:

3 tháng 4 2020

Cách hack điểm hỏi đáp trên OLM: https://www.youtube.com/watch?v=sMvl8_N_N54

7 tháng 5 2018

ngủ đi 

7 tháng 5 2018

giúp đi mà

19 tháng 4 2017

Lười quá, chắc mình giải câu c thôi ha.

Vẽ \(OH\) vuông góc \(d\) tại \(H\)\(AB\) cắt \(OH\) tại \(L\)\(OM\) cắt \(AB\) tại \(T\)

H M A B O d L T .

CM được \(OL.OH=OT.OM=R^2\) nên \(L\) cố định. Vậy \(AB\) luôn qua \(L\) cố định.

19 tháng 4 2017

Mơn Trần Quốc Đạt nha