K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2019

A B C N D F I K O

a) +) Ta có: IB, IK là 2 tiếp tuyến kẻ từ I

=> IO là tia phân giác \(\widehat{BIK}\)=->\(\widehat{BIO}=\frac{1}{2}\widehat{KIB}\)(1)

Tương tự: \(\widehat{IBO}=\frac{1}{2}\widehat{IBC}\)(2)

+) ND cùng vuông góc với IK và BC 

=> IK//BC

=> \(\widehat{KIB}+\widehat{IBC}=180^o\)(3)

Từ (1), (2), (3)

=> \(\widehat{IBO}+\widehat{BIO}=90^o\)=> \(\widehat{IBO}=90^o\)

+) Xét 2 tam giác vuông INO và ODB có:

\(\widehat{ION}=\widehat{OBD}\)( cùng phụ với góc BOD)

=> \(\Delta INO~\Delta ODB\)

=> \(\frac{IN}{OD}=\frac{ON}{BD}\)=> \(IN.BD=R^2\)( với R là bán kính đường tròn (O)) (4)

Tương tự ta cũng chứng minh được: \(NK.DC=R^2\)(5)

(4), (5)=> \(IN.BD=NK.DC\Rightarrow\frac{IN}{NK}=\frac{DC}{BD}\)(6)

b) IK//BC. Theo định lí Thaslet ta có:

\(\frac{IN}{BE}=\frac{NK}{EC}\left(=\frac{AN}{AE}\right)\Rightarrow\frac{IN}{NK}=\frac{BE}{EC}\)(7)

(6),(7)=> \(\frac{DC}{DB}=\frac{BE}{EC}\Rightarrow\frac{BC-BD}{DB}=\frac{BC-EC}{CE}\Rightarrow\frac{BC}{BD}-1=\frac{BC}{CE}-1\Rightarrow\frac{BC}{BD}=\frac{BC}{CE}\Rightarrow BD=CE\)