K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2019

Giải giùm bài này đi     https://olm.vn//hoi-dap/detail/220482385133.html?auto=1

4 tháng 5 2019

Câu a:  Xét \(\Delta ACE\)và   \(\Delta ABD\)có: A góc chung; AEC=ADB=90

Tam giác ACE đồng dạng ABD:  \(\Rightarrow\frac{AE}{AC}=\frac{AD}{AB}\Rightarrow AB.AE=AC.AD\)

a) Xét \(\Delta ADB\)và \(\Delta AEC\)có :\(\hept{\begin{cases}\widehat{BAC}:chung\\\widehat{ADB}=\widehat{AEC}=90^o\end{cases}}\Rightarrow\Delta ADB=\Delta AEC\left(g\cdot g\right)\)

\(\Rightarrow\frac{AD}{AE}=\frac{AB}{AC}\Leftrightarrow AD.AC=AB.AE\left(dpcm\right)\)

b) Ta có :\(\frac{AD}{AE}=\frac{AB}{AC}\Rightarrow\frac{AD}{AB}=\frac{AE}{AC}\)

Xét \(\Delta ADE\)và \(\Delta ABC\) có :\(\hept{\begin{cases}\widehat{EAD}=90^o\\\frac{AD}{AB}=\frac{AE}{AC}\end{cases}\Rightarrow\Delta ADE}\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)

23 tháng 5 2017

Hình (tự vẽ)

a) Xét \(\Delta ABDva\Delta ACE\):

\(\widehat{A}\left(chung\right)\)

\(\widehat{E}=\widehat{D}\left(=90'\right)\)

\(=>\Delta ABD\)đồng dạng \(\Delta ACE\left(g-g\right)\)

\(=>\frac{AB}{AC}=\frac{AD}{AE}< =>AB.AE=AC.AD\)

b)xét \(\Delta ADEva\Delta ABC\)

\(\widehat{A}\left(chung\right)\)

\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(=>\Delta ADE\)đồng dạng \(\Delta ABC\left(c-g-c\right)\)

c)Lưu Ý! Đề phải là DE cắt CB tại I

CM:

\(\widehat{IEB}=\widehat{AED}\)(đối đỉnh)

\(\widehat{AED}=\widehat{ACB}\)(tam giác ADE đồng dạng với tam giác ABC)

\(=>\widehat{IEB}=\widehat{ACB}\)

Lại có góc I chung

\(=>\Delta IBE\) đồng dạng với \(\Delta IDC\left(g-g\right)\)

d) từ c)=>\(\frac{IB}{ID}=\frac{IE}{IC}< =>ID.IE=IB.IC=\left(OI-OB\right)\left(OI+OC\right)\)

Mà OC=OB(gt)

\(=>ID.IE=\left(OI+OC\right)\left(OI-OC\right)=OI^2-OC^2\)

18 tháng 3 2017

bạn tự làm câu a,b,c nhá.

d,Xét tam giác ABD và tam giác ACE có:

Chung góc A

góc ADB=góc AEC(=90 độ)

suy ra tam giác ABC đồng dạng tam giác ACE(g.g)

suy ra

 AB/AC=AD/AE(đ/n 2 tam giác đồng dạng)

suy ra AB.AE=AC.AD(dieu phai cm)

e.Kẻ AH vuông góc với BC tại I

Xét BIH và BCD có:(mk viết tắt Tam giác nha)

Chung góc B

góc I=góc D(=90 độ)

suy ra BHI đồng dạng BCD(g.g)

suy ra HB/BC=BI/BD(đ/n 2 tam giác đồng dạng)

suy ra BH.BD=BC.BI (1)

tương tự xét CHI đồng dạng CBE(chung goc C;goc I=gocE=90 độ)

suy ra CH.CE=BC.IC (2)

từ (1) và (2) suy raBH.BD+CH.CE=BC.BI+BC.IC

                                                 =BC.(BI+IC)

                                                 =BC.BC

                                                 =BC2

Vậy BH.BD+CH.CE=BC2.

6 tháng 5 2018

a)  Xét \(\Delta ABD\)và   \(\Delta ACE\)có:

    \(\widehat{ADB}=\widehat{AEC}=90^0\)

    \(\widehat{BAC}\) chung

suy ra:   \(\Delta ABD~\Delta ACE\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{AC}=\frac{AD}{AE}\)

\(\Rightarrow\)\(AB.AE=AC.AD\) 

b)   \(\frac{AB}{AC}=\frac{AD}{AE}\) (câu a)

\(\Rightarrow\)\(\frac{AE}{AC}=\frac{AD}{AB}\)

Xét  \(\Delta AED\)và    \(\Delta ACB\)có:

     \(\frac{AE}{AC}=\frac{AD}{AB}\) (cmt)

     \(\widehat{EAD}\) chung

suy ra:   \(\Delta AED~\Delta ACB\)  (g.g)

c)  Kẻ  \(HK\perp BC\) \(\left(K\in BC\right)\)

C/m:    \(\Delta BKH~\Delta BDC\)(g.g)  \(\Rightarrow\) \(\frac{BK}{BD}=\frac{BH}{BC}\)\(\Rightarrow\)\(BH.BD=BK.BC\) (1)

           \(\Delta CKH~\Delta CEB\)(g.g)   \(\Rightarrow\)\(\frac{CK}{CE}=\frac{CH}{CB}\)\(\Rightarrow\)\(CE.CH=CK.BC\) (2)

Lấy (1) + (2) theo vế ta được:   \(BH.BD+CE.CH=BK.BC+CK.BC=BC^2\) (đpcm)

7 tháng 5 2015

ĐÁP ÁN BÀI HÌNH CÂU 3, 4 ĐỀ THI TOÁN 8 KỲ 2 TINH BẮC NINH NĂM HỌC 2014-2015

3. Từ ID.IE=IM2-MC= ( IM - MC ) ( IM + MC ) = IB. IC ( vì MB = MC ). Xét tam giác IDB và tam giác IEC có góc I chung, góc IDB = góc ICE ( vì phụ với hai góc bằng nhau góc ADE = góc ABC theo câu 2). suy ra tam giác IBD đồng dạng tam giác IEC(g-g). suy ra ID/IC = IB/IIE => ID.IE = IB.IC hay ID.IE=IM2-MC2.(đpcm).

4. Hạ đường cao AH cắt BC tại K. Chứng minh được tam giác BHK đồng dạng tam giác BCD và tam giác CHK đồng dạng tam giác CBE (g-g). Suy ra BH. BD = BC. BK và CH.CE = BC. CK => P = BH.BD + CH.CE = BC ( BK+CK ) = BC. BC= BC2

Thay BC = 15 vào biểu thức ta được P = BH.BD + CH.CE = 15= 225.

7 tháng 5 2016

giải câu 1 với câu 2 giùm em với