Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
rất hân hạnh làm quen you!(^^)
vẽ ch vuông với ab
tam giác hac vuông tại h,có góc a=60độ nên là nửa tam giác đều
nên AH=AC/2
DO ĐÓ HB=AB-AH=AB-AC/2(1)
TAM GIÁC HAC CÓ GÓC H =90 ĐỘ ,NÊN
AC^2=AH^2+HC^2,NÊN HC^2=AC^2-(AC/2)^2=3AC^2/4(2)
TAM GIÁC HBC VUÔNG TẠI,NÊN
BC^2=HB^2+HC^2
TỪ (1)VÀ (2),TA CÓ
BC^2=(AB-AC/2)^2+3AC^2/4=(AB-AC/2)(AB-AC/2)=3AC^2/4
=AB(AB-AC/2)-AC/2(AB-AC/2)+3AC^2/4
=(AB^2-AB*AC+AC^2/4)+3AC^2/4
=AB^2+AC^2-AB*AC
XONG RỒI ĐÓ.GIÚP TUI CÁI COI!
TUI MỚI ĐK NÊN K.O BIẾT LÀM SAO VÀO THU TOÁN 7
kẻ BH _|_ BC tại H
xét tam giác ABH vuông tại H
=> góc ABH + góc BAC = 90 (đl)
góc BAC = 60 (gt)
=> góc ABH = 30 ; xét tam giác ABH vuông tại H
=> AH = BA/2 (định lí)
=> AB = 2AH (1)
xét tam giác ABH vuông tại H
=> AB^2 = AH^2 + BH^2 (đl pytago)
=> BH^2 = AB^2 - AH^2 (2)
xét tam giác BHC vuông tại H
=> BC^2 = HC^2 + BH^2 (đl Pytago)
HC = AC - AH
=> BC^2 = (AC - AH)^2 + BH^2
=> BC^2 = AC^2 - 2AC.AH + AH^2 + BH^2 và (1)(2)
=> BC^2 = AC^2 - AB.AC + AH^2 + AB^2 - AH^2
=> BC^2 = AB^2 + AC^2 - AB.AC
A B C M N I 1 1 1 2
a) Vì \(\Delta ABC\)cân tại A ( GT )
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)( Tính chất tam giác cân )
Xét \(\Delta BMI\left(\widehat{BMI}=90^o\right)\)và \(\Delta CNI\left(\widehat{CNI}=90^o\right)\)có :
\(BI=CI\)( vì I là trung điểm của BC )
\(\widehat{ABC}=\widehat{ACB}\)( chứng minh trên )
\(\Rightarrow\Delta BMI=\Delta CNI\)( Cạnh huyền - góc nhọn )
b) VÌ \(\Delta BMI=\Delta CNI\)( chứng minh trên )
\(\Rightarrow BM=CN\)( 2 cạnh tương ứng )
Ta có : \(\hept{\begin{cases}AB=AM+MB\\AC=AN+NC\end{cases}}\)
Mà AB = AC ( vì \(\Delta ABC\)cân tại A ) ; BM = CN ( chứng minh trên )
\(\Rightarrow AM=AN\)
\(\Rightarrow\Delta AMN\)cân tại A ( Điều phải chứng minh )
c) Vì \(\Delta ABC\)cân tại A nên :
\(\widehat{B_1}=\frac{180^o-M\widehat{AN}}{2}\left(1\right)\)
Vì \(\Delta AMN\)cân tại A nên :
\(\widehat{M_1}=\frac{180^o-\widehat{MAN}}{2}\left(2\right)\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow\widehat{B_1}=\widehat{M_1}\)
Mà \(\widehat{B_1}\)và \(\widehat{M_1}\)ở vị trí đồng vị
\(\Rightarrow MN//BC\)( Dấu hiệu nhận biết 2 đường thẳng song song )
d) Xét \(\Delta ABI\)và \(\Delta ACI\)có :
\(AI\): cạnh chung
\(BI=CI\)( vì I là trung điểm của BC )
\(AB=AC\)( vì \(\Delta ABC\)cân tại A )
\(\Rightarrow\Delta ABI=\Delta ACI\left(c-c-c\right)\)
\(\Rightarrow\widehat{A_1}=\widehat{A_2}\)( 2 góc tương ứng )
\(\widehat{BIA}=\widehat{CIA}\)( 2 góc tương ứng )
Vì \(\widehat{A_1}=\widehat{A_2}\)( chứng minh trên )
=> AI là tia phân giác của \(\widehat{BAC}\)
Vì \(\widehat{BIA}=\widehat{CIA}\)( chứng minh trên )
Mà \(\widehat{BIA}+\widehat{CIA}=90^o\)( 2 góc kề bù )
\(\Rightarrow AI\perp BC\)
e) Áp dụng định lí pi-ta-go vào \(\Delta AIN\)có:
\(IN^2+AN^2=AI^2\)
\(\Rightarrow IN^2=AI^2-AN^2\left(3\right)\)
Áp dụng định lí pi-ta-go vào \(\Delta INC\)có:
\(IN^2+NC^2=IC^2\)
\(\Rightarrow IN^2=IC^2-NC^2\left(4\right)\)
Từ (3) và ( 4)
\(\Rightarrow2IN^2=AI^2-AN^2+IC^2-NC^2\)
\(\Rightarrow2IN^2=\left(AI^2+IC^2\right)-AN^2-NC^2\left(5\right)\)
Theo chứng minh trên ta có : \(AI\perp BC\)
\(\Rightarrow\Delta AIC\)vuông tại I
Áp dụng định lí pi-ta-go vào \(\Delta AIC\)ta có:
\(AC^2=AI^2+IC^2\left(6\right)\)
Từ (5) và (6)
\(\Rightarrow2IN^2=AC^2-AN^2-NC^2\)( Điều phải chứng minh )
a, vì tam giác ABC cân tại A => góc B = góc C ( 2 góc ở đáy bằng nhau )
-tam giác ABM và tam giác ACM có :
AB=AC(gt) |
góc B= góc C ( cmt ) | => tam giác ABM=tam giác ACM(c-g-c)
BM=CM (gt) |
=> góc A1 = góc A2 ( 2 góc t/ứ )
-tam giác AEM và tam giác AIM có
góc AEM=góc AIM(=90 độ) |
cạnh AM chung |=> tam giác AEM= tam giác AIM ( ch-gn)
góc A1= góc A2(cmt ) |
=> AE=AI(2 cạnh t/ứ)
b, vì tam giác AEI cân tại A => tia phân giác góc A vuông góc với EI
đặt AM cắt EI tại O
tam giác AEO và tam giác AIO có
góc AOE = góc AOI (=90 độ) |
AE=AI(cmt) | => tam giác AEO và tam giác AIO ( ch-cgv)
AO chung |
=> EO = IO ( 2 cạnh t/ứ )
vì AO vuông góc EI và EO = IO =>AO là đg trug trực của EI
mà AM là nối dài của AO => AM là đg trug trực của EI
c, vì tam giác AEI cân tại A => góc AEI = ( 180 độ - góc A ): 2 (1)
vì tam giác ABC cân tại A => góc ABC = ( 180 độ - góc A ) : 2 (2)
từ (1) và (2) => góc AEI = góc ABC mà 2 góc này ở vị trí đồng vị => EI // BC
d, vì BM=CM ( gt ) => BM = CM = 18: 2 = 9 (cm)
-AM^2 = AE^2 + BM^2
=>AM^2 = 15^2 - 9^2
=>AM^2 = 144
=>AM = 12 (cm)