Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gt: ABC có 3 góc nhọn
Phía ngoài ABC các đều ABD; ACE. CD giao BE tại k
Kl: a/ Chứng minh BE = CD
b/ Góc BKC = ?
c/ Chứng minh KA + KB + KC = 1/2. (BE + CD)
Mk chỉ có thể làm cho bạn 1/4 điểm số của bài này thui!
Xét tam giác ADC và tam giác AEB có:
AD = AB(giả thiết)
\(\widehat{DAC}=\widehat{BAE}\)(\(=60^0+\widehat{BAC}\))
AC = AE( giả thiết)
\(\Rightarrow\)tam giác ADC = tam giác ABE (c-g-c)
\(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 góc tương ứng)
Xét tam giác ADI và tam giác BIM có:
\(\widehat{ADI}+\widehat{AIM}+\widehat{DAI}=\widehat{IBM}+\widehat{BIM}+\widehat{IMB}=180^0\)(theo định lí tổng 3 góc của tam giác)
Mà \(\widehat{ADI}=\widehat{IBM}\)(chứng minh trên)
\(\widehat{AID}=\widehat{BIM}\)(2 góc đối đỉnh)
\(\Rightarrow\widehat{DAI}=\widehat{IMB}\)
Mà \(\widehat{DAI}=60^0\)
\(\Rightarrow\widehat{IMB}=60^0\)
Ta có: \(\widehat{IMB}+\widehat{BMC}=180^0\)(2 góc kề bù)
\(\Rightarrow60^0+\widehat{BMC}=180^0\)
\(\Rightarrow\widehat{BMC}=180^0-60^0=120^0\)
Vậy \(\widehat{BMC}=120^0\)(ĐPCM)
A B C D E K I
1) Xét \(\Delta ACD\)và \(\Delta AEB\)có:
AE=AB (vì \(\Delta ACE\)đều)
\(\widehat{CAD}=\widehat{BAE}\left(=60^o+\widehat{BAC}\right)\)
AD=AB (vì \(\Delta ABD\)đều)
\(\Rightarrow\Delta ACD=\Delta AEB\left(c.g.c\right)\)
\(\Rightarrow CD=EB\)
2 dễ, tự làm.
phần b khó quá ai bt làm ko