K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Hình đa giác TenDaGiac1: DaGiac[B, A, 4] Hình đa giác TenDaGiac2: DaGiac[A, C, 4] Đoạn thẳng f: Đoạn thẳng [A, B] Đoạn thẳng g: Đoạn thẳng [B, C] Đoạn thẳng h: Đoạn thẳng [A, C] Đoạn thẳng i: Đoạn thẳng [B, A] của Hình đa giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [A, E] của Hình đa giác TenDaGiac1 Đoạn thẳng k: Đoạn thẳng [E, D] của Hình đa giác TenDaGiac1 Đoạn thẳng l: Đoạn thẳng [D, B] của Hình đa giác TenDaGiac1 Đoạn thẳng m: Đoạn thẳng [A, C] của Hình đa giác TenDaGiac2 Đoạn thẳng n: Đoạn thẳng [C, F] của Hình đa giác TenDaGiac2 Đoạn thẳng p: Đoạn thẳng [F, H] của Hình đa giác TenDaGiac2 Đoạn thẳng q: Đoạn thẳng [H, A] của Hình đa giác TenDaGiac2 Đoạn thẳng r: Đoạn thẳng [E, C] Đoạn thẳng s: Đoạn thẳng [B, H] Đoạn thẳng d: Đoạn thẳng [O1, O2] Đoạn thẳng e: Đoạn thẳng [O2, I] Đoạn thẳng f_1: Đoạn thẳng [O1, I] A = (-0.2, 4.86) A = (-0.2, 4.86) A = (-0.2, 4.86) B = (-1, 1.46) B = (-1, 1.46) B = (-1, 1.46) C = (4.56, 0.9) C = (4.56, 0.9) C = (4.56, 0.9) Điểm E: DaGiac[B, A, 4] Điểm E: DaGiac[B, A, 4] Điểm E: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm D: DaGiac[B, A, 4] Điểm F: DaGiac[A, C, 4] Điểm F: DaGiac[A, C, 4] Điểm F: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm H: DaGiac[A, C, 4] Điểm O2: Giao điểm của b, c Điểm O2: Giao điểm của b, c Điểm O2: Giao điểm của b, c Điểm O1: Giao điểm của t, a Điểm O1: Giao điểm của t, a Điểm O1: Giao điểm của t, a Điểm I: Trung điểm của g Điểm I: Trung điểm của g Điểm I: Trung điểm của g

a. Ta thấy \(\widehat{EAC}=\widehat{BAH}\left(=\widehat{BAC}+90^o\right)\)

Vậy nên \(\Delta EAC=\Delta BAH\left(c-g-c\right)\)

Từ đó suy ra \(\widehat{ACE}=\widehat{AHB}\)

Vì \(\widehat{AHB}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{ACE}+\widehat{JHF}+\widehat{F}+\widehat{FCA}=270^o\Rightarrow\widehat{HJC}=90^o\)

Vậy \(EC\perp BH.\)

b. Ta thấy \(O_1\) là trung điểm EB. Vậy thì O1I là đường trung bình của tam giác BEC hay O1I // EC. Tương tự O2I // BH.

Lại có \(EC\perp BH\)  nên \(O_1I\perp O_2I.\)

Vậy tam giác O1O2I là tam giác vuông tại I.

16 tháng 9 2019

tự kẻ hình : 

có M; N lần lượt là trung điểm của AB; AC (gt)

=> MN là đường tb của tam giác ABC (đn)

=> MN // BC (đl)

góc BCNM là tứ giác

=> BCNM là hình thang (đn)

17 tháng 9 2019

@Soái muội:Uyên làm đúng rồi đó bạn! Làm theo bạn ấy đi

14 tháng 12 2020

Cho tam giác ABC, điểm I nằm trong tam giác. Các tia AI, BI, CI cắt các cạnh đối diện theo thứ tự ở D, E, F. Đường thẳng đi qua I và song song với BC cắt DE, DF theo thứ tự ở N, M. Chứng minh IN = IM