Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\widehat{ABH}+\widehat{A}=90^0\)
\(\widehat{ACK}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,xét 2 tam giác ABH và ACK
2 tam giác này bằng nhau theo trường hợp ch-gn
suy ra BH=CK
![](https://rs.olm.vn/images/avt/0.png?1311)
a)xét 2 tam giác vuông AHB và AKC có:
\(\widehat{A}\) là góc chung
AB=AC (ΔABC cân tại A)
⇒ΔAHB=ΔAKC (cạnh huyền góc nhọn)
⇒BH=CK (2 cạnh tương ứng)
b) xét 2 tam giác vuông AHI và AKI có:
AH=AK (ΔAHB=ΔAKC)
AI là cạnh chung
⇒ ΔAHI=ΔAKI (cạnh huyền cạnh góc vuông)
⇒\(\widehat{HAI}\) =\(\widehat{KAI}\) (2 góc tương ứng)
⇒AI là tia phân giác của\(\widehat{HAK}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác BCH và tam giác CBK có
góc KBC = góc HCB ( vì tam giác ABC cân )
BC : cạnh chung
góc BKC = CHB = 90 độ (GT )
Từ 3 điều trên => Tam giác BCH = tam giác CBK (cạnh huyền - góc nhọn )
b) Vì tam giác BCH = tam giác CBK ( chứng minh ở câu a )
=> BH = CK ( cặp cạnh tương ứng )
c) Vì tam giác BCH = tam giác CBK ( câu a )
=> CH = BK ( 2 cạnh tương ứng )
Xét tam giác KIB và tam giác HIC có :
Góc KIB = góc HIC ( 2 góc đối đỉnh ) (1)
BK = CH ( chứng minh trên ) (2)
góc IKB = góc IHC = 90 độ (GT ) (3)
Từ (1) (2) và(3) => tam giác KIB = tam giác HIC ( g-c-g )
=> IB = IC ( cặp cạnh tương ứng )
=> tam giác BIC cân tại I
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C I K H M
a) xét tam giác AHB vuông tại H và tam giác AKC vuông tại K có
góc A chung
AB = AC (gt)
Vậy tam giác AHB = tam giác AKC ( cạnh huyền góc nhọn)
suy ra BH = CK, AH = AK
b) ta có AH = AK; AB = AC
mà BK = AB - AK và HC = AC - AH
=> Bk = HC
Xét hai tam giác vuông tam giác BIK và tam giác CIH có:
góc KIB = góc HIC ( đối đỉnh)
BK = HC (cmt)
Vậy tam gics BIK = tam giác CIH
c) M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC
mà tam giác ABC là tam giác cân tại A nên AM đồng thời là trung tuyến, đường cao
mặt khác BH và Ck cũng là đường cao của tam giác ABC nên BH; CK; Am đồng quy tại 1 điểm
Suy ra A; I; M thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 3
Trả lời:
a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :
AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)
AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)
Aˆ:chungA^:chung
=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
~Học tốt!~
Bài 1 : a) Xét ΔAKC,ΔAHBΔAKC,ΔAHB có :
AKCˆ=AHBˆ(=90O)AKC^=AHB^(=90O)
AB=AC(ΔABC cân tại A)AB=AC(ΔABC cân tại A)
Aˆ:chungA^:chung
=> ΔAKC=ΔAHBΔAKC=ΔAHB (cạnh huyền - góc nhọn)
=> AH = AK (2 cạnh tương ứng)
Bài 2
a, Xét tam giác OBN và tam giác MAO ta có:
OB=OA( giả thiết)
góc OBN= góc OAM=90 độ
có chung góc O
⇒⇒tam giác OBN = tam giác OAM( cạnh góc vuông/ góc nhọn kề cạnh)
suy ra: ON=OM(hai cạnh tương ứng)
+ vì OA=OB và ON=OM
suy ra : OM-OB=ON-OA
suy ra : BM=AN
b, theo câu a ta có :
tam giác OBN= tam giác OAM
suy ra : góc ANH = góc BMH( hai góc tương ứng )
xét tam giác HMB và tam giác HAN ta có
BN=AN
góc HAN = góc HBM = 900
góc ANH = góc HBM
suy ra: tam giác BMH = tam giác ANH(cạnh góc vuông/ góc nhọn kề cạnh)
suy ra : HB=HA(hai cạnh tương ứng)
xét tam giác OHA và tam giác OHB ta có
OA=OB(giả thiết)
HB=HA
OH là cạnh chung
suy ra: tam giác OHA = tam giác OHB(c.g.c)
suy ra: góc BOH= góc AOH( hai góc tương ứng)
vậy OH là tia phân giác của góc xOy
c, xét tam giác MOI và tam giác NOI ta có :
OM=On ( giả thiết)
góc BOH= góc HOA
Oi là cạnh chung
suy ra tam giác MOI= tam giác NOI(c.g.c)
suy ra góc MIO = góc NIO (hai góc tương ứng)
mà góc MIO + góc NIO = 1800 ( hai góc kề bù)
nên OI vuông góc với MN
áp dụng định lý của hai đường thẳng vuông góc ta có ba điểm O,H,I thẳng hàng
Bài 3 mình không biết làm :)))
Chúc bạn học tốt ~!
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét \(\Delta\)tam giác vuông AKC và tam giác vuông AHB ta có :
AB=AC(do tam giácABC cân tại a)
góc A chung
=}tam giácAkc =tam giác AHB (ch_gn)
=}AH=AK(2 cạnh tương ứng)
b,Do AK=AH(cm câu a)=} I thuộc phân giác góc A
=}AI là phân giác góc A
k hộ mình nhé
a) Xét ΔACK và ΔABH
Ta có: ∠AKC = ∠AHB = 900 (gt)
AB = AC (ΔABC cân tại A)
∠BAC chung
nên ΔACK = ΔABH (cạnh huyền-cạnh góc vuông)
suy ra AH = AK
b) Ta có BH⊥AC; CK⊥AB(gt)
mà BH và CK cắt nhau tại I
nên I là trực tâm của ΔABC
suy ra AI là đường cao của ΔABC
mà ΔABC cân tại A
nên AI la Phân giác của ∠BAC
\(\widehat{ABH}+\widehat{A}=90^0\)
\(\widehat{ACK}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)