Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Mink Pkuong - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo link này nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : \(\widehat{IAB}=180^0-\widehat{BAH}=180^0-\left(90^0-\widehat{ABC}\right)=90^0+\widehat{ABC}=\widehat{EBC}\)
Xét \(\Delta\)ABI và \(\Delta\)BEC có :
AI = BC(gt)
\(\widehat{IAB}=\widehat{EBC}\)(cmt)
AB = BE(tam giác ABE vuông cân tại B)
=> \(\Delta\)ABI = \(\Delta\)BEC (c-g-c)
b) \(\Delta\)ABI = \(\Delta\)BEC (câu a) nên : BI = EC(hai cạnh tương ứng)
\(\widehat{ECB}=\widehat{BIA}\)hay \(\widehat{ECB}=\widehat{BIH}\)
Gọi giao điểm của CE với AB là M
Ta có : \(\widehat{MCB}+\widehat{MBC}=\widehat{BIH}+\widehat{IBH}=90^0\Rightarrow\widehat{BMC}=90^0\)
Do đó \(CE\perp BI\)
Gọi giao điểm của BF và AC là N
Ta có : \(\widehat{NCB}+\widehat{NBC}=\widehat{CIH}+\widehat{ICH}=90^0\Rightarrow\widehat{BNC}=90^0\)
=> BF vuông góc với CI
c) \(\Delta\)BIC có : AH,CE,BF là ba đường cao => AH,CE,BF đồng quy
–12 –12 –12 –10 –10 –10 –8 –8 –8 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 8 8 8 10 10 10 12 12 12 14 14 14 16 16 16 18 18 18 –6 –6 –6 –4 –4 –4 –2 –2 –2 2 2 2 4 4 4 6 6 6 0 0 0 A A A B B B C C C I I I H H H E E E F F F M M M
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
Ta có: EA = EC
FB=FC
=> FC/EC=FB/EA Theo Talét đảo => AE//BF 2.C = 45 độ
=> ABC là tam giác vuông cân tại A
Xét tam giác vuông BAF có BF^2=BA^2+AF^2=5BA^2 (1)
Dễ thấy AD là đường cao tam giác vuông cân ABC nên AD = BD =AB /2
AE = BC = AB căn2, pitago vào tam giác vuông EDB
=> BE2 = 5AB2 (2)
Từ (1) và (2)suy ra BE=BF
Vậy vuông góc chứng minh BEF =45 độ
ss="Apple-interchange-newline">