Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MN vuông góc DF
=>EM vuông góc DF
AK là đường kính , BC là đây cung (1)
=> AK vuông góc BC hay DM vuông góc DF(2)
Từ (1) và (2) suy ra:
M là tâm đường tròn ngoại tiếp tam giác DEF
Tết nghỉ ngơi đi em, thời gian này nên chơi cho đầu óc thanh thản chứ ko nên học
Hướng dẫn sơ sơ cách giải cho câu này:
Trước hết em chứng minh \(MN\perp DF\)
Sau đó chứng minh \(DN=NF\) (đều bằng \(\dfrac{1}{2}AC\), lý do là 2 trung tuyến của 2 tam giác vuông đều có cạnh huyền AC)
\(\Rightarrow MN\) là trung trực DF (1)
Hoàn toàn tương tự, gọi P là trung điểm AB thì cũng chứng minh được \(MP\perp DE\) và \(PD=PE\Rightarrow PM\) là trung trực DE (2)
(1);(2) suy ra đpcm
Tham khảo :
Cái này mình tham khảo ở Qanda nha ko đúng đc thì thui bạn nha :
A B C T K O P S E F G I
a) Áp dụng tính chất của góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung, ta có:
\(\widehat{TAB}=\widehat{TCA}\)
Suy ra \(\Delta\)TAB ~ \(\Delta\)TCA (g.g) \(\Rightarrow\frac{TA}{TC}=\frac{TB}{TA}\Rightarrow TA^2=TB.TC\)(đpcm)
Hai điểm A và K cùng nằm trên (T) nên \(\Delta\)ATK cân tại T => \(\widehat{TAK}=\widehat{TKA}\)(1)
Dễ thấy góc TKA là góc ngoài của \(\Delta\)ACK => \(\widehat{TKA}=\widehat{CAK}+\widehat{ACK}\)
\(\Rightarrow\widehat{CAK}=\widehat{TKA}-\widehat{ACK}\)(2)
Ta có: \(\widehat{BAK}=\widehat{TAK}-\widehat{TAB}=\widehat{TAK}-\widehat{ACB}\)(Do \(\widehat{TAB}=\widehat{ACB}\))
hay \(\widehat{BAK}=\widehat{TAK}-\widehat{ACK}\)(3)
Từ (1); (2) và (3) suy ra: \(\widehat{BAK}=\widehat{CAK}\)=> AK là tia phân giác của \(\widehat{BAC}\)(đpcm).
b) Ta có: \(\frac{TA}{TC}=\frac{TB}{TA}\)=> \(\frac{TP}{TC}=\frac{TB}{TP}\)(P và A thuộc (T))
Từ đó ta chứng minh được: \(\Delta\)TBP ~ \(\Delta\)TPC (c.g.c) => \(\widehat{TPB}=\widehat{TCP}\)
Xét \(\Delta\)BPC: Tia PT nằm ngoài tam giác thỏa mãn \(\widehat{TPB}=\widehat{TCP}\)
Vậy nên TP là tiếp tuyến của đường tròn ngoại tiếp \(\Delta\)BPC (đpcm).
c) Gọi giao điểm của của AT và EF kéo dài là G, EF cắt AP tại điểm I.
Ta thấy tứ giác BEFC nội tiếp (O) => \(\widehat{BCP}=\widehat{EFP}\)hay \(\widehat{EFP}=\widehat{TCP}\)
Mà \(\widehat{TPB}=\widehat{TCP}\)(cmt) => \(\widehat{EFP}=\widehat{TPB}\)
Vì 2 góc trên nằm ở vị trí so le trong nên TP // EF hay TP // GI
Lại có: \(\Delta\)ATP cân tại T có GI // TP (G\(\in\)AT; I\(\in\)AP) => \(\Delta\)AGI cân tại G => \(\widehat{GAI}=\widehat{GIA}\)(4)
\(\widehat{EAI}=\widehat{GAI}-\widehat{GAE}\)(5); \(\widehat{FAI}=\widehat{GIA}-\widehat{AFG}\)(6)
Dễ chứng minh \(\widehat{GAE}=\widehat{AFG}\)(7)
Từ (4); (5); (6) và (7) => \(\widehat{EAI}=\widehat{FAI}\) hay \(\widehat{EAS}=\widehat{FAS}\)
Mà tứ giác AESF nội tiếp (O) => \(\widehat{EAS}=\widehat{EFS}\)và \(\widehat{FAS}=\widehat{FES}\)
Từ đó ta có: \(\widehat{EFS}=\widehat{FES}\)=> Tam giác ESF cân tại S => S nằm trên đường trung trực của EF
Mà EF là dây cung của (O) nên O cũng nằm trên trung trực của EF
Do đó SO là trung trực của EF hay \(SO\perp EF\)(đpcm).
Xin lỗi bạn, 2 góc EFP và TPB là hai góc đồng vị, không phải so le trong nhé.
góc ADC=góc AFC=90 độ
=>ADFC nội tiếp
=>góc DFA=góc DCA=góc BCA
=>góc DFA=góc BKA
=>DF//BK
=>DF vuông góc AB
MN//AB
=>MN vuông góc DF