\(\sqrt{3}\)và AB<AC. Gọi H là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Tổng quát cho câu 2 là định lí Ptolemy, như sau: Cho \(ABCD\) nội tiếp bất kì. Khi đó \(AC.BD=AB.CD+AD.BC\).


A B C D E

CM: Vẽ \(E\in AC\) sao cho \(\widehat{ABD}=\widehat{EBC}\).

Khi đó có hai tam giác sau đồng dạng \(ABD\) và \(EBC\)\(ABE\) và \(DBC\).

Suy ra tỉ lệ cạnh: \(\frac{AD}{EC}=\frac{BD}{BC}\) và \(\frac{AB}{DB}=\frac{AE}{DC}\).

Hay \(AD.BC=BD.EC\) và \(AB.DC=AE.DB\)

Cộng lại: \(AB.CD+AD.BC=BD\left(AE+EC\right)=AC.BD\)

25 tháng 3 2020

em ko biết

26 tháng 3 2020

A B C D E K H N M 2 1 2 1 1 1 F O

Xét \(\Delta ABK\)và \(\Delta C\text{D}K\)có:

\(\widehat{A_1}=\widehat{C_2}\)( 2 góc nội tiếp cùng chắn cung BD )

\(\widehat{AKB}=\widehat{CK\text{D}}\)( đối đỉnh )

\(\Rightarrow\Delta ABK~\Delta C\text{D}K\left(g-g\right)\)

\(\Rightarrow\frac{KA}{KB}=\frac{KC}{K\text{D}}\Rightarrow KA.K\text{D}=KB.KC\)

b) Kéo dài CH và BH cắt AB và AC lần lượt tại N và M

Xét \(\Delta HC\text{D}\) có:

CK vừa là đường cao vừa là đường trung tuyến

\(\Rightarrow\Delta HC\text{D}\)cân tại C

\(\Rightarrow\)CK là đường phân giác của \(\widehat{HC\text{D}}\Rightarrow\widehat{C_1}=\widehat{C_2}\)

Xét \(\Delta AMH\) và \(\Delta CKH\)có:

\(\widehat{AHM}=\widehat{CHK}\)( đối đỉnh )

\(\widehat{A_1}=\widehat{C_1}\)( cùng bằng \(\widehat{C_2}\))

\(\Rightarrow\Delta AMH~\Delta CKH\left(g-g\right)\)

\(\Rightarrow\widehat{AMH}=\widehat{CKH}=90^0\)

Hay \(CM\perp AB\)

Xét \(\Delta ABC\)có:

2 đường cao cắt nhau tại H

\(\Rightarrow\)H là trực tâm của tam giác ABC

c) Ta có: DE // BC Mà \(A\text{D}\perp BC\Rightarrow DE\perp A\text{D}\Rightarrow\widehat{FDE}=90^0\)

Xét \(\Delta AFB\)Và \(\Delta\text{E}FD\)có:

\(\widehat{F_1}=\widehat{F_2}\)( đối đỉnh )

\(\widehat{A_1}=\widehat{FED}\)( góc nội tiếp cùng chắn cung BD )

\(\Rightarrow\Delta\text{A}FB~\Delta\text{E}FD\left(g-g\right)\)

\(\Rightarrow\widehat{ABF}=\widehat{E\text{D}F}=90^0\)

Xét tam giác ABE nội tiếp đường tròn ( O, R )

có: \(\widehat{ABE}=90^0\)\(\Rightarrow\)AE là đường kính của ( O, R )

\(\Rightarrow\)A , O , E thẳng hàng

23 tháng 1 2020

1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)

 ~~~~~~~~~ Bài làm ~~~~~~~~~

A B C O I K H Q D

Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))

\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))

\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)

Ta lại có: \(BD\perp HK\)

\(\Rightarrow BD\) là đường trung trực của \(HK\)

\(\Rightarrow\Delta IHK\) cân tại \(I\)

\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)

Lại có:\(\widehat{DKO}=\widehat{HAO}\)\(\Delta OKA\) cân tại \(O\))

Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)

\(\Rightarrow\widehat{KIO}=90^0\)

\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)

(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )

24 tháng 1 2020

Ủa bạn ơi sao phụ nhau? Dòng đầu ấy

15 tháng 4 2020

Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H

a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.

b/ Chứng minh : OM // AH

c/ Chứng minh : AB.AE = AC.AD

d/ Gọi K là điểm đối xứng của H qua M .