Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E H O M
a) Từ O kẻ OM vuông góc với AD
Khi đó theo tính chất của đường kính và dây cung thì M là trung điểm AD
Lại có O là trung điểm AE => MO là đường trung bình của tam giác ADE
=> MO // DE , lại có MO // BC (cùng vuông góc với AD)
=> DE // BC
b) Tứ giác ABDC nột tiếp đường tròn (O)
=> \(\widehat{ADB}=\widehat{BCA}\Leftrightarrow90^0-\widehat{ADB}=90^0-\widehat{BCA}\Rightarrow\widehat{CBD}=\widehat{ECB}\)
Lại có từ phần a, BED là hình thang vì có BC // DE
=> BCED là hình thang cân
a, Xét ΔADE nội tiếp đường tròn đường kính AE
=> AD ⊥ DE (1)
LẠi có AH ⊥ BC = > AD ⊥ BC (2)
Từ (1) và (2) => DE // BC ( cùng vuông góc với AD) (*)
b, Ta có: Tứ giác ABDC nội tiếp
=> ˆADBADB^= ˆACBACB^
Lại có : ˆCBDCBD^ + ˆADBADB^ = ˆACBACB^ + ˆECBECB^ ( cùng bằng 90 độ)
=> ˆCBDCBD^ = ˆECBECB^ (**)
Từ (*) và (**) => BCED là hình thang cân
a; Xét (O) có
ΔADE nội tiếp
AE là đường kính
Do đó: ΔADE vuông tại D
=>AD\(\perp\)DE tại D
AD\(\perp\)DE
AD\(\perp\)BC
Do đó: DE//BC
Xét tứ giác BDEC có DE//BC
nên BDEC là hình thang
Xét (O) có B,D,E,C cùng thuộc (O)
nên BDEC là tứ giác nội tiếp
=>\(\widehat{BDE}+\widehat{BCE}=180^0\)
mà \(\widehat{BDE}+\widehat{CBD}=180^0\)(DE//BC)
nên \(\widehat{BCE}=\widehat{CBD}\)
Xét hình thang DECB có \(\widehat{BCE}=\widehat{CBD}\)
nên DECB là hình thang cân
b: M là điểm chính giữa của cung DE nên MD=ME
=>M nằm trên đường trung trực của DE(1)
OD=OE
=>O nằm trên đường trung trực của DE(2)
Từ (1) và (2) suy ra OM là đường trung trực của DE
=>OM\(\perp\)DE
mà DE//BC
nên OM\(\perp\)BC tại I
ΔOBC cân tại O
mà OI là đường cao
nên I là trung điểm của BC