Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFEC có \(\widehat{BFC}=\widehat{BEC}=90^0\)
nên BFEC là tứ giác nội tiếp
b: \(\widehat{HEF}=\widehat{QCB}\)
\(\widehat{HPQ}=\widehat{QCB}\)
Do đó: \(\widehat{HEF}=\widehat{HPQ}\)
=>EF//QP
Vẽ đường kính CM
\(MA\perp AC\)(\(\Delta MAC\)nội tiếp)
\(BE\perp AC\)(giả thiết)
\(\Rightarrow\)\(MA//BH\) (1)
\(MB\perp BC\)(\(\Delta MBC\)nội tiếp)
\(AH\perp BC\)(giả thiết)
\(\Rightarrow\)\(MB//AH\)(2)
Từ (1)(2):
\(\Rightarrow\)\(MAHB\)là hình bình hành.
\(\Rightarrow\)\(AH=BM\)
Do\(\widehat{BAC}=60^0\)
\(\Rightarrow BC=R\sqrt{3}\)
Áp dụng địn lí Pytago vào \(\Delta BMC\)
\(BM^2+BC^2=MC^2\)
\(\Leftrightarrow\)\(BM^2=4R^2-3R^2\)
\(\Leftrightarrow\)\(BM^2=R^2\)
\(\Leftrightarrow\)\(BM=\sqrt{R^2}=R\)
\(\Rightarrow\)\(AH=BM=R\)
Mà \(AO=\frac{2R}{2}=R\)
\(\Rightarrow\)\(AH=AO\)
\(\Rightarrow\)\(\Delta AHO\)cân tại \(A\)(ĐPCM)
câu c theo nha
câu c nha