Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAC}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC(g-g)
Suy ra: \(\dfrac{AE}{AF}=\dfrac{AB}{AC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét ΔAEF và ΔABC có
\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)(cmt)
\(\widehat{EAF}\) chung
Do đó: ΔAEF\(\sim\)ΔABC(c-g-c)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
\(\widehat{BAE}\) chung
Do đó: ΔAEB\(\sim\)ΔAFC
b: Ta có: ΔAEB\(\sim\)ΔAFC
nên AE/AF=AB/AC
hay AE/AB=AF/AC
Xét ΔAEF và ΔABC có
AE/AB=AF/AC
\(\widehat{EAF}\) chung
DO đó: ΔAEF\(\sim\)ΔABC
A B C E F D H
b.
Vẽ đường cao AD cũng cắt BE và CF
Xét tam giác BDH và tam giác BEC có:
góc D = E = 90o
góc B chung
Do đó: tam giác BDH~BEC (g.g)
=> \(\dfrac{BD}{BE}=\dfrac{BH}{BC}\Rightarrow BH.BE=BD.BC\) (1)
Xét tam giác CHD và tam giác CBF có:
góc D = F = 90o
góc C chung
Do đó: tam giác CHD~CBF (g.g)
=> \(\dfrac{CH}{CB}=\dfrac{CD}{CF}\Rightarrow CH.CF=CD.BC\) (2)
Từ (1) và (2) cộng vế theo vế ta được:
\(BH.BE+CH.CF=BD.BC+CD.BC\)
\(\Rightarrow BH.BE+CH.CF=BC\left(BD+CD\right)\)
\(\Rightarrow BH.BE+CH.CF=BC^2\)
A B C F E H
a xét △ AEB và △AFC có
\(\widehat{E}=\widehat{F}=90^0\)
\(\widehat{A}CHUNG\)
=> △ AEB ∼ △AFC (g.g)
=> \(\dfrac{AE}{FA}=\dfrac{AB}{AC}\Rightarrow\dfrac{AE}{AB}=\dfrac{FA}{AC}\)
xét △ AEF và △ ABC có
\(\widehat{A}CHUNG\)
\(\dfrac{AE}{AB}=\dfrac{FA}{AC}\)
=> △ AEF ∼ △ ABC (c.g.c )(đpcm)
Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)
Do đó: ΔFHB\(\sim\)ΔEHC
Xét ΔBDH vuông tại D và ΔBEC vuông tại E có
\(\widehat{DBH}\) chung
Do đó: ΔBDH\(\sim\)ΔBEC
Suy ra: BD/BE=BH/BC
hay \(BD\cdot BC=BE\cdot BH\)
Xét ΔCDH vuông tại D và ΔCFB vuông tại F có
\(\widehat{DCH}\) chung
Do đó: ΔCDH~ΔCFB
=>\(\dfrac{CD}{CF}=\dfrac{CH}{CB}\)
=>\(CD\cdot CB=CH\cdot CF\)
\(BH\cdot BE+CH\cdot CF\)
\(=BD\cdot BC+CD\cdot BC=BC\left(BD+CD\right)=BC^2\)