K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

a) Gọi I là giao điểm của AH và ED

Xét tam giác ABC có:

E là trung điểm AC

D là trung điểm AB

Vậy: ED là đg tr/bình của tam giác ABC

=> ED // BC (t/chất đg tr/bình của tam giác)

Mà: AH vuông góc BC

=> AH vuông góc ED (từ vuông góc đến //)   (1)

Xét tam giác ABH có:

D là tr/điểm AB

ID // BC (I thuộc ED; ED // BC)

Vậy: I là tr/điểm AH (2)

Từ (1) và (2) 

=> A và H đối xứng nhau qua DE

b) Vẽ đường cao FQ (trong DEFH ý)

Có: IH vuông góc ED

       FQ vuông góc ED

Vậy: IH // FQ (từ vuông góc đến //)

Có: DE // BC

Mà: HF thuộc BC

 => HF // DE

=> DEFH là h/thang 

Xét tam giác EIH và tam giác DQF có:

IH = FQ (IH và FQ là đg cao của h/thang DEFH) (P/s: 2 đường cao hạ từ đỉnh xuống cạnh đối diện với điều kiện 2 cạnh đó phải // thì 2 đg cao đó sẽ = nhau)

Góc I = góc Q (=90 độ)

Góc EHI = góc QFD (2 góc đồng vị)

Vậy: tam giác EIH = tam giác DQF (g-c-g)

=> HE = FD (2 cạnh tương ứng)

c) Có: DEFH là hình thang (c/minh ở câu b)

         Góc IEH = góc QDF (tam giác EIH = tam giác DQF)

Vậy: Hình thang DEFH là h/thang cân

 

21 tháng 9 2016

a)gọi giao điểm của DE và AH là K

 Xét tam giác ABC có:

       D là trung điểm của AB(gt)

       E là trung điểm của AC(gt)

=>DE là đường trung bình của tam giác ABC(định nghĩa)

=>DE//BC(t/c)

mà AH vuông góc vs BC(gt)

=> AH vuông góc vs DE ( từ vuông góc đến //)

Xét tam giác AHC có

      KE//BC(cmt)

      E là trung điểm của AC

=> K là trung điểm của AH(định lý)

Có AH vuông góc vs DE tại K (cmt)

     K là trung điểm của AH (cmt)

=> DE là đường trung trực của AH

=> A và H đối xứng nhau qua DE ( định nghĩa)

Vậy A và H đối xứng nhau qua DE

b)Có DE là đường trung trực của AH

=> AE=EH(t/c)(1)

Xét tam giác ABC có: D là trung điểm AB(gt)

                                   F là trung điểm BC(gt)

=> DF là đường trung bình của tam giác ABC(định nghĩa)

=> DF=1/2 AC(t/c)

mà AE=1/2AC( E là trung điểm AC)=> DF=AE(2)

từ (1) và (2)=>DF=HE

Vậy DF= HE

c)Xét hình thang DEFH ( DE//FH) có

        DF=HE(cmt)

=> DEFH là hình thang cân (dhnb)

Vậy DEFH là hình thang cân

      

a: Ta có: ΔAHB vuông tại H

mà HD là đường trung tuyến ứng với cạnh huyền AB

nên HD=AD

hay D nằm trên đường trung trực của AH(1)

ta có: ΔAHC vuông tại H

mà HE là đường trung tuyến ứng với cạnh huyền AC

nên HE=AE

hay E nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra DE là đường trung trực của AH

hay A và H đối xứng nhau qua ED

8 tháng 9 2021

cần giúp...

10 tháng 12 2020

a) Xét tứ giác EDCB có ED//BC(gt)

nên EDCB là hình thang có hai đáy là ED và BC(Định nghĩa hình thang)

Hình thang EDCB có \(\widehat{B}=\widehat{DCB}\)(hai góc ở đáy của ΔABC cân tại A)

nên EDCB là hình thang cân(Dấu hiệu nhận biết hình thang cân)

b) Xét tứ giác AKCH có 

D là trung điểm của đường chéo AC(gt)

D là trung điểm của đường chéo HK(H và K đối xứng nhau qua D)

Do đó: AKCH là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành AKCH có \(\widehat{AHC}=90^0\)(AH⊥BC)

nên AKCH là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Xét ΔABC cân tại A có AH là đường cao ứng với cạnh đáy BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác cân)

⇒H là trung điểm của BC

hay HB=HC

mà HC=AK(Hai cạnh đối trong hình chữ nhật AHCK)

nên BH=AK

Xét ΔABC có 

H là trung điểm của BC(cmt)

D là trung điểm của AC(gt)

Do đó: HD là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒HD//AB và \(HD=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔABC có 

D là trung điểm của AC(gt)

DE//BC(gt)

Do đó: E là trung điểm của AB(Định lí 1 về đường trung bình của tam giác)

\(AE=\dfrac{AB}{2}\)(2)

Từ (1) và (2) suy ra HD//AE và HD=AE

Xét tứ giác AEHD có 

HD//AE(cmt)

HD=AE(cmt)

Do đó: AEHD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và ED cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AH cắt ED tại F

nên F là trung điểm chung của AH và ED

Xét tứ giác AKHB có 

AK//HB(AK//HC, B∈HC)

AK=HB(cmt)

Do đó: AKHB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà F là trung điểm của AH(cmt)

nên F là trung điểm của BK(đpcm)

29 tháng 3 2020

TÌM MỘT SỐ CÓ BÔN CHỮ SỐ,BIẾT CHỮ SỐ HÀNG TRĂM GẤP ĐÔI CHỮ SỐ HÀNG NGHÌN,CHỮ SỐ HÀNG CHỤC GẤP ĐÔI CHỮ SỐ HÀNG TRĂM, CHỮ SỐ HÀNG ĐƠN VỊ LỚN HƠN CHỮ SỐ HÀNG CHỤC LÀ 3.