K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

Bn xem cái này nhé :

Cho tam giác ABC,các đường cao BD CE cắt nhau ở H,Gọi K là hình chiếu của H trên BC,Chứng minh rằng BH.BD = BK.BC,CH.CE = CK.CB,Đường vuông góc với AB tại B,đường vuông góc với AC tại C cắt nhau ở Q,M là trung điểm của BC,Chứng minh: H M Q thẳng hàng,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

Ủng hộ mk nhé :

Chúc bn học tốt

16 tháng 11 2016

Cho tam giác ABC,Các trung tuyến BD và CE cắt nhau tại G,Gọi H là trung điểm của GB,K là trung điểm của GC,Chứng minh tứ giác DEHK là hình bình hành,Tam giác ABC có điều kiện gì để tứ giác DEHK là hình chữ nhật,Khi BD vuông góc với CE thì tứ giác DEHK là hình gì,Toán học Lớp 8,bài tập Toán học Lớp 8,giải bài tập Toán học Lớp 8,Toán học,Lớp 8

16 tháng 11 2016

E là trung điểm của AB (CE là đường trung tuyến của tam giác ABC)

D là trung điểm của AC (BD là đường trung tuyến của tam giác ABC)

=> ED là đường trung bình của tam giác ABC.

=> ED // BC (1)

ED = BC/2 (2)

H là trung điểm của GB (gt)

K là trung điểm của GC (gt)

=> HK là đường trung bình của tam giác GBC.

=> HK // BC (3)

HK = BC/2 (4)

Từ (1) và (3)

=> ED // HK (5)

Từ (2) và (4)

=> ED = HK (6)

Từ (5) và (6)

=> DEHK là hình bình hành.

=> G là trung điểm của EK và HD.

=> EG = GK = EK/2

HG = GD = HD/2

CE là đường trung tuyến của tam giác ABC.

=> EG = CE/3

BD là đường trung tuyến của tam giác ABC.

=> DG = BD/3

DEHK là hình chữ nhật

<=> EK = HD

<=> EK/2 = HD/2

<=> EG = DG

<=> CE/3 = BD/3

<=> CE = BD

<=> Tam giác ABC cân tại A

Vậy DEHK là hình chữ nhật khi tam giác ABC cân tại A.

Hình bình hành DEHK có EK _I_ HD

=> DEHK là hình thoi.

AH
Akai Haruma
Giáo viên
28 tháng 7 2017

Lời giải:

a)

Ta có : \(\left\{\begin{matrix} \widehat{EHB}=\widehat{DHC}\\ `\widehat{HEB}=\widehat{HDC}\end{matrix}\right.\Rightarrow \triangle EHB\sim \triangle DHC\)

\(\Rightarrow \frac{EH}{HB}=\frac{DH}{HC}\Leftrightarrow \frac{EH}{HD}=\frac{HB}{HC}\)

Kết hợp với \(\widehat{EHD}=\widehat{BHC}\Rightarrow \triangle EHD\sim \triangle BHC(c.g.c)\)

Ta có đpcm.

b)

Theo phần a, \(\triangle EHD\sim \triangle BHC\Rightarrow \widehat{HED}=\widehat{HBC}\Rightarrow 90^0-\widehat{HED}=90^0-\widehat{HBC} \)

\(\Leftrightarrow \widehat{DEA}=\widehat{DCB}\) . Mà \(\widehat{DEA}=\widehat{PEB}\Rightarrow \widehat{PEB}=\widehat{DCB}\)

\(\left\{\begin{matrix} \widehat{BPE}=\widehat{BDC}\\ \widehat{PEB}=\widehat{DCB}\end{matrix}\right.\Rightarrow \triangle BPE\sim \triangle BDC\Rightarrow \frac{PE}{DC}=\frac{BE}{BC}(1)\)

Tương tự \(\triangle CDQ\sim \triangle CBE\Rightarrow \frac{DQ}{BE}=\frac{CD}{BC}(2)\)

Từ \((1),(2)\Rightarrow \frac{PE.BE}{DC.DQ}=\frac{BE}{DC}\Rightarrow \frac{PE}{DQ}=1\leftrightarrow PE=DQ\)

c) Gọi \(T\equiv HM\cap IK\)

Ta có \(\widehat{NAK}=\widehat{HBM}(=90^0-\widehat{ACB})(1)\)

Xét tứ giác \(HDKT\)\(\widehat{HDK}=\widehat{HTK}=90^0\Rightarrow \widehat{DKT}+\widehat{DHT}=180^0\)

\(\Leftrightarrow \widehat{AKN}=\widehat{DKT}=180^0-\widehat{DHT}=\widehat{MHB}(2)\)

Từ \((1),(2)\Rightarrow \triangle NAK\sim \triangle MBH\Rightarrow \frac{NK}{MH}=\frac{NA}{MB}\)

Tương tự, \(\triangle AIN\sim \triangle CHM\Rightarrow \frac{AN}{CM}=\frac{IN}{HM}\)

Từ hai tỉ số trên suy ra \(1=\frac{CM}{BM}=\frac{NK}{IN}\Rightarrow NK=IN\)

Vậy \(N\) là trung điểm của $IK$

21 tháng 11 2017

A B C D H I K