K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VT
26 tháng 8 2020
a,
Kẻ BE,CF vuông góc với AM.
Ta có:
MA.BC = MA.(BP+CP) ≥ MA.(BE+CF) = 2 SABM + 2 SCAM
Tuong tu:
MB.CA ≥ 2SBCM + 2 SABM
MC.AB ≥ 2SCAM + 2 SBCM
Suy ra:
MA.BC + MB.CA + MC.AB ≥ 2 ( 2 SABM + 2SBCM + 2SCAM) = 4SABC
dpcm.
Dấu = xảy ra khi M là trực tâm.
LN
21 tháng 8 2017
GỌi E;F thứ tự là hình chiếu của B,C trên AM và S1;S2;S3 là diện tích các tam giác AMB;AMC;BMC Ta có:
AM.BE+AM.CFAM.BE+AM.CF \leq AM.BD+AM.CDAM.BD+AM.CD Hay 2S1+2S22S1+2S2 \leq AM.(BD+CD)=AM.BC
Dấu = xảy ra khi AM vuông góc BC
tương tự có: 2S1+2S32S1+2S3 \leq BM.AC
2S2+2S32S2+2S3 \leq CM.AB
\Rightarrow AM.BC+BM.AC+CM.AB \geq 4SABC4SABC
dấu = xảy ra khi M là trực tâm tam giác ABC
D là giao điểm của AM và BC
chúc bạn học tốt
ĐÚNG 100%