Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
O cách đều 3 cạnh nên O là giao của 3 đường phân giác của Δ ABC
Xét Δ ABO và Δ MBO có: Cạnh BO chung, B1=B2,AB=BM⇒ Δ ABO = Δ MBO (c.g.c) ⇒ OA = OM (1)
Tương tự có Δ ACO = Δ NCO (c.g.c) ⇒ AO = ON (2).
Từ (1) và (2) ⇒ ON = OM hay Δ MON cân tại O.
Mà OD⊥ BC ⇒ OD vừa là đường cao vừa là đường phân giác ⇒ NOD=MOD.
Ta có: FOM^ =FOD+ MOD =1800−ABC+MOD
EON=3600−NOD−EOD= 3600−NOD^−(1800−ACB) = 1800+ACB−NOD
Ta chứng minh FOM=EON.
Thật vậy FOM=EON
⇔1800−ABC+MOD = 1800+ACB−NOD
⇔1800−(ABC+ACB)=1800−(NOD+MOD)
⇔BAC=ONM+OMN.
⇔A1+A2=ONM+OMN
Luôn đúng vì {A1=OMN(ΔABO=ΔMBO);A2=ONM(ΔAOC=ΔNOC)
Vậy ΔFOM=ΔEON (c.g.c)
⇒ FM = EN
Chúc các em học tốt, thân!
Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song) |
Kẻ AH vuông góc BC tại H , AH cắt MF tại G. Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC |
Gọi AM = x; MC = y thìAC = x + y Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet) Thì FM/BC=x/x+y |
Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y |
Do đó Sbefm/Sabc=2*xy/(x+y)^2 Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4 |
Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc |
Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y Hay M là trung điểm của AC. Gõ mỏi tay ko biết đc j ko-_- |
a)tứ giác AEDF là hình chữ nhật (vì E=A=F=900 )
Để tứ giác AEDF là hình vuông thì AD là tia phân giác của góc BAC
b)do tứ giác AEDF là hình chữ nhật nên AD=EF
=>3AD+4EF nhỏ nhất => AD nhỏ nhất
D là hình chiếu góc vuông của A lên BC
a: Xét tứ giác ADME có
gócADM=góc AEM=góc DAE=90 độ
=>ADME là hình chữ nhật
b: góc AHM=góc AEM=góc ADM=90 độ
=>A,D,H,M,E cùng thuộc đường tròn đường kính AM
mà ED và AM cùng là đường kính của đường tròn đường kính AM(ED=AM)
nên H nằm trên đường tròn đường kính DE
=>góc DHE=90 độ
c: DE=AM
AM>=AH
=>DE>=AH
Dấu = xảy ra khi M trùng với H
=>M là chân đường cao kẻ từ A xuống BC