Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C O F H E D I K A' C' B' M N
a) Do BHCK là hình bình hành nên BH // KC \(\Rightarrow KC\perp AC\Rightarrow\widehat{ACK}=90^o\)
KB // CF \(\Rightarrow\widehat{ABK}=90^o\)
Hai tam giác vuông ABK và ACK chung cạnh huyền AK nên A, B, C, K cùng thuộc đường tròn đường kính AK. Vậy K thuộc đường tròn (O).
b) Do BHCK là hình bình hành nên I là trung điểm HK.
AK là đường kính nên \(\widehat{AA'K}=90^o\Rightarrow\) DI // A'K
Vậy DI là đường trung bình tam giác HA'K. Suy ra HD = DA'
Tương tự : HF = FC' ; HE = EB'
Ta có : \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=\frac{AD+DA'}{AD}+\frac{BE+EE'}{BE}+\frac{CF+FC'}{CF}\)
\(=1+\frac{DA'}{AD}+1+\frac{EB'}{BE}+1+\frac{FC'}{CF}=3+\left(\frac{DA'}{AD}+\frac{EB'}{BE}+\frac{FC'}{CF}\right)\)
\(=3+\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)=3+\left(\frac{S_{BHC}}{S_{ABC}}+\frac{S_{AHC}}{S_{ABC}}+\frac{S_{AHB}}{S_{ABC}}\right)\)
\(=3+\frac{S_{ABC}}{S_{ABC}}=3+1=4\)
Vậy nên \(\frac{AA'}{AD}+\frac{BB'}{BE}+\frac{CC'}{CF}=4\)
c) Ta thấy \(\widehat{AKC}=\widehat{ABC}=\widehat{AHF}\)
Vậy nên \(\Delta AFH\sim\Delta ACK\left(g-g\right)\Rightarrow\frac{AH}{AK}=\frac{AF}{AC}\) (1)
AFH và AEH là các tam giác vuông chung cạnh huyền AH nên AFHE là tứ giác nội tiếp.
Vậy thì \(\widehat{AFM}=\widehat{AHE}=\widehat{ACN}\)
Lại có \(\Delta AFH\sim\Delta ACK\Rightarrow\widehat{FAM}=\widehat{CAN}\)
Nên \(\Delta AFM\sim\Delta ACN\left(g-g\right)\Rightarrow\frac{AF}{AC}=\frac{AM}{AN}\) (2)
Từ (1) và (2) suy ra \(\frac{AH}{AK}=\frac{AM}{AN}\Rightarrow\frac{AH}{AM}=\frac{AK}{AN}\Rightarrow\) MN // HK (Định lý Talet đảo)
O A B C D E F H M G I
a) Kẻ đường thẳng Ax tiếp xúc với đường tròn (O) tại A.
Khi đó \(\widehat{FAx}=\widehat{ACB}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)
Ta dễ thấy BFEC là tứ giác nội tiếp nên \(\widehat{AFE}=\widehat{ACB}\)
Vậy nên \(\widehat{AFE}=\widehat{FAx}\), chúng lại ở vị trí so le trong nên Ax // EF
Mà \(Ax\perp OA\Rightarrow EF\perp OA\)
Tương tự ta có : \(FD\perp OB;ED\perp OC\)
b) Kẻ đường kính CI. Khi đó ta có ngay IB // AH (Cùng vuông góc BC) ; IA // BH (Cùng vuông góc AC). Vậy nên tứ giác AIBH là hình bình hành và AH = IB.
Xét tam giác IBC có M là trung điểm BC, OC = OB nên OM là đường trung bình. Vậy \(OM=\frac{1}{2}IB\Rightarrow OM=\frac{1}{2}AH\)
Tương tự, gọi N, P lần lượt là trung điểm AB, AC thì \(ON=\frac{1}{2}BH;OP=\frac{1}{2}CH\)
c) Gọi G' là giao điểm của AM và HO.
Ta thấy OM // AH nên áp dụng định lý Ta let ta có:
\(\frac{MG'}{G'A}=\frac{OM}{AH}=\frac{1}{2}\)
Độ ẨM là đường trung tuyến, AG' = G'M nên G' là trọng tâm tam giác ABC hay G' trùng G. Vậy H, G, O thẳng hàng.
O A B C D E F H M G J I P Q X
d) Gọi giao điểm của OA với PQ là J. Khi đó J là trung điểm QP.
Xét tam giác APQ có AJ là đường cao đồng thời trung tuyến nên nó là tam giác cân.
Vậy thì AP = AQ hay AP2 = AQ2. (1)
Kẻ đường kính AX.
Xét tam giác vuông AQX, đường cao QJ, ta có:
\(AQ^2=AJ.AX\) (2)
Tứ giác BFEC nội tiếp nên \(\widehat{AFJ}=\widehat{ACB}=\widehat{AXB}\)
Suy ra \(\Delta AFJ\sim\Delta AXB\left(g-g\right)\Rightarrow\frac{AF}{AX}=\frac{AJ}{AB}\Rightarrow AJ.AX=AF.AB\)
Ta cũng có \(\Delta AFH\sim\Delta ADB\left(g-g\right)\Rightarrow\frac{AF}{AD}=\frac{AH}{AB}\Rightarrow AD.AH=AF.AB\)
Vậy thì \(AJ.AX=AH.AD\) hay \(AJ.AX=2.OM.AD\) (3)
Từ (1), (2) và (3) suy ra AP2 = AQ2 = 2OM.AD
a) Xét 2 tam giác vuông DHC và FBC có: ^HCD chung => \(\Delta DHC~\Delta FBC\)
=> \(\frac{CD}{CF}=\frac{CH}{BC}\) => \(CH.CF=BC.CD\) (1)
tương tự với 2 tam giác vuông DBH và EBC có: ^EBC chung => \(\Delta DBH~\Delta EBC\)
=> \(\frac{BD}{BE}=\frac{BH}{BC}\) => \(BH.BE=BC.BD\) (2)
(1) và (2) => \(CH.CF+BH.BE=BC\left(BD+CD\right)=BC^2\)
b) CM tương tự câu a), ta cũng có: \(AH.AD+BH.BE=AB^2;AH.AD+CH.CF=AC^2\)
cộng lại ta có đpcm
A B C D E F I L K H O
Chứng minh được H là tâm đường tròn nội tiếp tam giác DEF
Ta có \(FI\perp AE,HE\perp AC\Rightarrow FI//HE\)và \(HF\perp AB,EI\perp AF\Rightarrow HF//EI\)
Lúc đó HFIE là hình bình hành\(\Rightarrow FI//HE,FI=HE\)
Tương tự: \(DL//HE,DL\perp HE\)
\(\Rightarrow FILD\)là hình bình hành. Tương tự FELK là hình bình hành.
Gọi O là trung điểm của ID. Ta có O là trung điểm của FL, EK
Hai tam giác DEF, IKL đối xứng qua O
Do đó H là tâm đường tròn nội tiếp tam giác IKL
\(\Leftrightarrow H\equiv O\Leftrightarrow\hept{\begin{cases}EF//BC\\DF//AC\\ED//AB\end{cases}}\)
khi và chỉ khi \(\widehat{A}=\widehat{B}=\widehat{C}\)hay tam giác ABC đều
Bài lớp 8 hơi khó và mình chưa có t/g suy nghĩ, lm bài lớp 9 trước đó nha
a,b mình làm đc rồi các ban làm giúp mình câu c nha