\(\dfrac{1}{2}ab.\si...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

1)

Kẻ phân giác AD,BK vuông góc với AD
sin A/2=sinBAD
xét tam giác AKB vuông tại K,có:
sinBAD=BK/AB (1)
xét tam giác BKD vuông tại K,có
BK<=BD thay vào (1):
sinBAD<=BD/AB(2)
lại có:BD/CD=AB/AC
=>BD/(BD+CD)=AB/(AB+AC)
=>BD/BC=AB/(AB+AC)
=>BD=(AB*BC)/(AB+AC) thay vào (2)
sinBAD<=[(AB*BC)/(AB+AC)]/AB
= BC/(AB + AC)
=>ĐPCM

AH
Akai Haruma
Giáo viên
16 tháng 7 2018

Lời giải:

Kẻ $AH$ vuông góc với $BC$. Khi đó:
\(S_{ABC}=\frac{AH.BC}{2}(1)\)

Mặt khác, theo công thức lượng giác:

\(\frac{AH}{AB}=\sin B\Rightarrow AH=\sin B.AB(2)\)

Từ \((1);(2)\Rightarrow S_{ABC}=\frac{\sin B.AB.BC}{2}=\frac{\sin B.ca}{2}\) (đpcm)

4 tháng 8 2017

Bài 1:

Áp dụng định lí pytago trong tam giác vuông ABC ta có:

BC2=AC2+AB2

BC2=42+32

BC=\(\sqrt{25}\)=5(cm)

Ta có:

Sin B=\(\dfrac{AC}{BC}=\dfrac{4}{5}=0.8\)

Cos B=\(\dfrac{AB}{BC}=\dfrac{3}{5}=0.6\)

Tag B=\(\dfrac{AC}{AB}=\dfrac{4}{3}\)

Cotg B=\(\dfrac{AB}{AC}=\dfrac{3}{4}=0.75\)

22 tháng 9 2017

bài 2:

\(\sin\alpha^2+\cos\alpha^2=1\)

=>0,62+\(\cos\alpha^2=1\)

=>\(\cos\alpha=0,8\)

\(\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=>\tan\alpha=\dfrac{0,6}{0,8}=0,75\)

\(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}=\dfrac{0,8}{0,6}\)\(\approx1,33\)

AH
Akai Haruma
Giáo viên
21 tháng 7 2017

Lời giải:

Theo hệ thức lượng trong tam giác:\(\sin ^2a=\frac{1-\cos 2a}{2}\)

Áp dụng vào bài toán và sử dụng định lý hàm cos:

\(\sin ^2\frac{A}{2}=\frac{1-\cos A}{2}=\frac{1-\frac{b^2+c^2-a^2}{2bc}}{2}=\frac{a^2-(b-c)^2}{4bc}\)

Ta cần CM \(\frac{a^2-(b-c)^2}{4bc}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow (ab+ac)^2-(b^2-c^2)^2\leq 4a^2bc\)

\(\Leftrightarrow a^2b^2+a^2c^2\leq 2a^2bc+(b^2-c^2)^2\)

\(\Leftrightarrow (b^2-c^2)^2-a^2(b-c)^2\geq 0\Leftrightarrow (b-c)^2[(b+c)^2-a^2]\geq 0\)

BĐT luôn đúng do với \(a,b,c\) là độ dài ba cạnh tam giác thì \(b+c>a\leftrightarrow (b+c)^2>a^2\)

Vậy \(\sin ^2\frac{A}{2}\leq \left (\frac{a}{b+c}\right)^2\Leftrightarrow \sin \frac{A}{2}\leq \frac{a}{b+c}\) (đpcm)

Tương tự : \(\sin \frac{B}{2}\leq \frac{b}{a+c},\sin \frac{C}{2}\leq \frac{c}{a+b}\)

\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{abc}{(a+b)(b+c)(c+a)}\)

Theo BĐT AM-GM: \((a+b)(b+c)(c+a)\geq 2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ac}=8abc\Rightarrow \frac{abc}{(a+b)(b+c)(c+a)}\leq \frac{1}{8}\)

\(\Rightarrow \sin \frac{A}{2}\sin \frac{B}{2}\sin \frac{C}{2}\leq \frac{1}{8}\) (đpcm)

19 tháng 7 2017

@Akai Haruma giúp mình với

20 tháng 10 2018

A B C D H K a, Vẽ phân giác AD của góc BAC

Kẻ BH\(\perp\)AD tại H ; CK\(\perp AD\) tại K

Dễ thấy \(sin\widehat{A_1}=sin\widehat{A_2}=sin\dfrac{A}{2}=\dfrac{BH}{AB}=\dfrac{CK}{AC}=\dfrac{BH+CK}{AB+AC}\le\)\(\le\dfrac{BD+CD}{b+c}=\dfrac{a}{b+c}\)

b, Tượng tự \(sin\dfrac{B}{2}\le\dfrac{b}{a+c};sin\dfrac{C}{2}\le\dfrac{c}{a+b}\)

Mặt khác \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}.2\sqrt{bc}.2\sqrt{ca}=8abc\)

\(\Rightarrow sin\dfrac{A}{2}.sin\dfrac{B}{2}.sin\dfrac{C}{2}\le\dfrac{abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{1}{8}\)

23 tháng 7 2017

A B C c H b a h

kẻ AH vuông góc với BC 

đặt AH = h . xét hai tam giác vuông AHB và AHC , ta có :

sin B = \(\frac{AH}{AB}\),   sin C = \(\frac{AH}{AC}\)

do đó \(\frac{sinB}{sinC}=\frac{AH}{AB}\cdot\frac{AC}{AH}=\frac{h}{c}\cdot\frac{b}{h}=\frac{b}{c}\)

suy ra \(\frac{b}{sinB}=\frac{c}{sinC}\)

tương tự   \(\frac{a}{sinA}=\frac{b}{sinB}\)

vậy suy ra dpcm

23 tháng 7 2017

cái đường thẳng cắt tam giác đó mk không bt nó thừ đâu tới, bạn bỏ cái đấy đi nhá

AH
Akai Haruma
Giáo viên
11 tháng 8 2017

Lời giải:

Kẻ \(BE\perp AC(E\in AC)\)

Khi đó \(\sin A=\frac{BE}{c}\Rightarrow \frac{a}{\sin A}=\frac{ac}{BE}\)

Mặt khác, \(S_{ABC}=\frac{BE.b}{2}\Rightarrow BE=\frac{2S_{ABC}}{b}\)

\(\Rightarrow \frac{a}{\sin A}=\frac{abc}{2S_{ABC}}\). Hoàn toàn tương tự với \(\frac{b}{\sin B},\frac{c}{\sin C}\) ta có:

\(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}=\frac{abc}{2S_{ABC}}\) (đpcm)

11 tháng 8 2017

Gọi O là đường tròn ngoại tiếp tam giác ABC, D là trung điểm của BC, ta có:

\(OD\perp BC\)

\(OB=R;BD=\dfrac{1}{2}a\)

\(\widehat{BOD}=\widehat{A}\) (A là góc nội tiếp chắn cung BC, Ở là góc tâm chắn \(\dfrac{1}{2}\) cung BC)

Trong tam giác vuông DOB ta có:

\(sin\left(DOB\right)=\dfrac{BD}{OB}\)

\(\Rightarrow sinA=\dfrac{1}{2}\cdot\dfrac{a}{R}\Rightarrow\dfrac{a}{sinA}=2R\)

Chứng minh tương tự ta có:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\)