K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2022

loading...  

19 tháng 5 2017

A B C H M K I

Gọi M là trung điểm của BC

Xét hai tam giác vuông BMI và CMI có:

BM = CM (vì M là trung điểm của BC)

MI: cạnh chung

Vậy: \(\Delta BMI=\Delta CMI\left(hcgv\right)\)

Suy ra: IB = IC (hai cạnh tương ứng)

Xét hai tam giác vuông AHI và AKI có:

AI: cạnh huyền chung

\(\widehat{HAI}=\widehat{KAI}\left(gt\right)\)

Vậy: \(\Delta AHI=\Delta AKI\left(ch-gn\right)\)

Suy ra: IH = IK (hai cạnh tương ứng)

Xét hai tam giác vuông IHB và IKC có:

IB = IC (cmt)

IH = IK (cmt)

Vậy: \(\Delta IHB=\Delta IKC\left(ch-cgv\right)\)

Suy ra: BH = CK (hai cạnh tương ứng).

19 tháng 5 2017

*Hình ảnh chỉ mang tính chất minh hoạ, mong bn thông cảmleuleu

23 tháng 2 2017

hình tự vẽ nhé

đường trung trục của BC là HT cắt tia phân giác AK của góc A ở I .

Xét tam giác HIB và tam giác HIC ta có:

 HB = HC ( HT là đường trung trực của BC)

 HI chung

 góc IHC= góc IHB = 90 độ

 => tam giác HIB = tam giác HIC (c.g.c)

 => IC = IB ( 2 cạnh tương ứng)

 Xét tam giác AIE và tam giác AID ta có:

 góc A1 = góc A2 ( AK là tia phân giác góc A)

 AI là cạnh chung

 => tam giác AIE = tam giác AID ( cạnh huyền góc nhọn )

=> IE=ID (2 cạnh tương ứng)

theo định lý Py-ta-go ta có:

xét tam giác vuông EIC: IC- IE= EC2

xét tam giác vuông DIB: IB2 - ID2 = BD2

mà IC=IB , ID=IE => EC2=BD2 => EC=BD

xét tam giác DBI và tam giác ECI ta có:

DB=EC (CM trên)

IE=ID (CM trên)

IB=IC (CM trên)

suy ra tam giác DBI= tam giác ECI (ĐPCM)

=> góc ACI=góc DIB (2 góc tương ứng)

mà tổng 2 góc ABI và góc DIB = 90 độ

=> góc ABI + góc ACI = 90 dộ 

20 tháng 6 2019

Xét ∆BMI và ∆CMI, ta có:

+) BM = CM (vì IM là đường trung trực của BC)

+) \(\widehat{BMI}=\widehat{CMI}=90^0\)

+) MI cạnh chung 

Suy ra: ∆BMI = ∆CMI (c.g.c)

⇒ IB = IC (hai cạnh tương ứng)

Xét hai tam giác vuông IHA và IKA, có: 

+) \(\widehat{HAI}=\widehat{KAI}\) (AI là phân giác góc A)

+) AI cạnh huyền chung

Suy ra: ∆IHA = ∆IKA (cạnh huyền - góc nhọn)

Suy ra: IH = IK (hai cạnh tương ứng)

Xét hai tam giác vuông IHB và IKC, có:

+) IB = IC (chứng minh trên)

+) IH = IK (chứng minh trên)

Suy ra: ∆IHB = ∆IKC (cạnh huyền - cạnh góc vuông)

Suy ra: BH = CK (2 cạnh tương ứng)

12 tháng 1 2022

dcmbatngo