Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét tam giác BHE và tam giác CHD b)
góc BHE =góc CHD (đối đỉnh)
góc E= góc D=90 độ
Vậy tam giác BHE ~ tam giác CHD(g_g)
Suy ra:HB.HD=HE.HC
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có CH vuông góc vs AB
DF vgoc vs AB
=>CH // DF
b) hai tam giác AHE và ACD đồng dạng (g.g)
=>AH/AC=AE/AD=>AH.AD=AE.AC
c) 2 tam giác AHE và BHD đồng dạng (g.g)=>AH/BH=HE/HD=> AH/HE=BH/HD
xét tam giác AHB và tam giácEHD có AH/HE=BH/HD
góc AHB= góc DHE
=> 2 tam giác này đồng dạng
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có H là giao điểm đường cao AD và BE
=>H là trực tâm tam giác ABC
=>CH là đường cao
=>CH vuông góc AB
Mà DF vuông góc AB
=>CH//DF
b, Tam giác AHE và tam giác ACD
góc CAD chung
góc AEB=góc ADC
Tam giác AHE và tam giác ACD (gg)
=>AH/AC=AE/AD
=>AH.AD=AE.AC
![](https://rs.olm.vn/images/avt/0.png?1311)
a)tg AEB và tg AFC có
-^AEB=^AFC
-^BEA=^FAC
=>tg AEB đồng dạng tg AFC
=>AE/AF=AB/AC
=>AE. AC=AF.AB
b) AE/AF=AB/AC
=>AE/AB= AF/AC
tgAEF và tg ABC có
-^EAF=^BAC
- AE/AB= AF/AC
=>tg AEF đồng dạng tg ABC
c) tg AEB đồng dạng tg AFC
=>^ABE=^ ACF
hay ^FBH=^ECH
tg FHB và tg EHC c ó
-^FBH=^ECH
-^FHB=^EHC
=> tg FHB và tg EHC đồng dạng
=>FH/EH=HB/HC
tg FHE và tg BHC có
- FH/EH=HB/HC
-^FHE=^BHC(2 g óc đối đỉnh)
=> tg FHE và tg BHC đồng dạng
tg ABD và CBF có
-^ADB=^CFB(=90 độ)
-^ABD=^CBF
=> tg ABD và CBF đồng dạng
=>AB/BC=BD/BF
=>BF.AB=BC.BD
Tương tự chứng minh:CE.CA=CD.BC
=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2