K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2016

a) xét tam giác BHE và tam giác CHD                                                      b)

     góc BHE =góc CHD (đối đỉnh)

     góc E= góc D=90 độ

Vậy tam giác BHE ~ tam giác CHD(g_g)

Suy ra:HB.HD=HE.HC

8 tháng 5 2016

a) ta có CH  vuông góc vs AB

             DF vgoc vs AB

=>CH // DF

b) hai tam giác AHE  và ACD đồng dạng (g.g)

=>AH/AC=AE/AD=>AH.AD=AE.AC

c) 2 tam giác AHE và BHD đồng dạng (g.g)=>AH/BH=HE/HD=> AH/HE=BH/HD

xét tam giác AHB và tam giácEHD có AH/HE=BH/HD

                                                             góc AHB= góc DHE 

=> 2 tam giác này đồng dạng

 

8 tháng 5 2016

a, Ta có H là giao điểm đường cao AD và BE

=>H là trực tâm tam giác ABC

=>CH là đường cao

=>CH vuông góc AB

Mà DF vuông góc AB 

=>CH//DF

8 tháng 5 2016

b, Tam giác AHE và tam giác ACD

   góc CAD chung

   góc AEB=góc ADC

Tam giác AHE và tam giác ACD (gg)

=>AH/AC=AE/AD

=>AH.AD=AE.AC

4 tháng 1 2017

 a)tg AEB và tg AFC có 
-^AEB=^AFC 
-^BEA=^FAC 
=>tg AEB đồng dạng tg AFC 
=>AE/AF=AB/AC 
=>AE. AC=AF.AB 
b) AE/AF=AB/AC
=>AE/AB= AF/AC 
tgAEF và tg ABC có 
-^EAF=^BAC 
- AE/AB= AF/AC 
=>tg AEF đồng dạng tg ABC 
c) tg AEB đồng dạng tg AFC 
=>^ABE=^ ACF 
hay ^FBH=^ECH 
tg FHB và tg EHC c ó 
-^FBH=^ECH 
-^FHB=^EHC 
=> tg FHB và tg EHC đồng dạng 
=>FH/EH=HB/HC 
tg FHE và tg BHC có 
- FH/EH=HB/HC 
-^FHE=^BHC(2 g óc đối đỉnh) 
=> tg FHE và tg BHC đồng dạng 
tg ABD và CBF có 
-^ADB=^CFB(=90 độ) 
-^ABD=^CBF 
=> tg ABD và CBF đồng dạng 
=>AB/BC=BD/BF 

=>BF.AB=BC.BD 
Tương tự chứng minh:CE.CA=CD.BC 
=> BF.AB+CE.CA =BC.BD+CD.BC=BC(BD.CD)=BC^2

4 tháng 1 2017

k hiểu j lun ák

18 tháng 4 2023

bạn chép đúng đề bài k đấy ạ?