K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2017

A B C E F M H K I

a)  Ta thấy ngay \(\Delta AEB\sim\Delta AFC\left(g-g\right)\Rightarrow\frac{AE}{AF}=\frac{AB}{AC}\Rightarrow\frac{AE}{AB}=\frac{AF}{AC}\)

Vậy thì \(\Delta AEF\sim\Delta ABC\left(c-g-c\right)\Rightarrow\frac{EF}{BC}=\frac{AE}{AB}\) 

Xét tam giác vuông ABE có \(cos\widehat{BAE}=\frac{AE}{AB}\Rightarrow\frac{AE}{AB}=cos60^o=\frac{1}{2}\)

Suy ra \(\frac{EF}{BC}=\frac{1}{2}\Rightarrow EF=\frac{a}{2}\)

b) Ta thấy ngay tứ giác BKHM nội tiếp nên \(\widehat{KHB}=\widehat{KMB}\) (Hai góc nội tiếp cùng chắn cung BK)

Ta cũng có tứ giác CIHM nội tiếp nên \(\widehat{CMI}=\widehat{CHI}\)(Hai góc nội tiếp cùng chắn cung CI)

Ta thấy ngay E thuộc đường tròn đường kính BC nên \(\widehat{EBM}=\widehat{ICM}\)

(Góc ngoài tại đỉnh đối diện)

Suy ra \(\widehat{BMK}=\widehat{CMI}\) nên \(\widehat{KHB}=\widehat{CHI}\)

Vậy I, H, K thẳng hàng.

Ta thấy ngay \(\Delta EIK\sim\Delta HMC\sim\Delta HBM\Rightarrow\frac{EI}{MI}=\frac{EI}{EK}=\frac{MH}{CH}\)

và \(\frac{MH}{BH}=\frac{EK}{EI}=\frac{EK}{MK}\)
Mà \(\Delta CMI\sim\Delta BMK\Rightarrow\frac{CI}{MI}=\frac{BK}{MK}\) 
Vậy thì \(S=\frac{BC}{MH}+\frac{CE}{MI}+\frac{BE}{MK}=\frac{BH+HC}{MH}+\frac{EI-CI}{MI}+\frac{BK+KE}{MK}\)

\(=\frac{BH}{MH}+\frac{CH}{MH}+\frac{EI}{MI}-\frac{CI}{MI}+\frac{BK}{MK}+\frac{EK}{MK}\)

\(=\left(\frac{BH}{MH}+\frac{CH}{MH}\right)+\left(\frac{MH}{CH}-\frac{BK}{MK}\right)+\left(\frac{BK}{MK}+\frac{MH}{BH}\right)\)

\(=\left(\frac{BH}{MH}+\frac{MH}{BH}\right)+\left(\frac{CH}{MH}+\frac{MH}{CH}\right)\ge2+2=4\)
\(\Rightarrow minS=4\Leftrightarrow MH=BH=CH\)
hay M ở chính giữa cung BC.

21 tháng 11 2017

Chi. Quan li lam dung roi

24 tháng 11 2017

https://olm.vn/hoi-dap/question/1088709.html

Em có thể xem tại đây.

24 tháng 11 2017
Dm cu Hung fech
7 tháng 5 2018

ngủ đi 

7 tháng 5 2018

giúp đi mà

27 tháng 3 2018

Gọi H là hình chiếu của O trên BC. 

ta có OH = const (BC cố định)
a.
{MI  ⊥ABMK  ⊥AC{MI  ⊥ABMK  ⊥AC


→{AIM^=90oAKM^=90o→{AIM^=90oAKM^=90o

→→ tứ giác AIMK nt đtròn đkính AM.
b.
Ta có:
MKC^+MPC^=180oMKC^+MPC^=180o

→→ Tứ giác MPCK nt đtròn đkính MC

→MPK^=MCK^  (1)→MPK^=MCK^  (1) (góc nt cùng chắn MK⌢MK⌢ )

Xét (O;R), ta có:

MBC^=MCK^  (2)MBC^=MCK^  (2) (góc nt và góc tt với dây cung cùng chắn MC⌢MC⌢ )

K/h (1),(2) : MPK^=MBC^  (3)MPK^=MBC^  (3)

c. lần lượt CM:

MPK^=MIP^  (4)MPK^=MIP^  (4)

MPI^=MKP^MPI^=MKP^

→ΔMIP∼ΔMPK→ΔMIP∼ΔMPK

Tỉ số đồng dạng :

MIMP=MPMKMIMP=MPMK

→MP2=MI.MK→MP2=MI.MK

→MP3=MI.MK.MP→MP3=MI.MK.MP

MI.MK.MPMax↔MPMaxMI.MK.MPMax↔MPMax

Ta có: MP+OH≤RMP+OH≤R

→MP≤R−OH→MP≤R−OH

→MPMax→MPMax bằng R-OH. Khi O,H,M thẳng hàng

Vậy MI.MK.MPMax=(R−OH)3MI.MK.MPMax=(R−OH)3 khi O,H,M thẳng hàng

8 tháng 3 2022
Gọi H là hình chiếu của O trên BC. ta có OH = const (BC cố định)a.{MI ⊥ABMK ⊥AC{MI ⊥ABMK ⊥AC→{AIM^=90oAKM^=90o→{AIM^=90oAKM^=90o→→ tứ giác AIMK nt đtròn đkính AM.b.Ta có:MKC^+MPC^=180oMKC^+MPC^=180o→→ Tứ giác MPCK nt đtròn đkính MC→MPK^=MCK^ (1)→MPK^=MCK^ (1) (góc nt cùng chắn MK⌢MK⌢ )Xét (O;R), ta có:MBC^=MCK^ (2)MBC^=MCK^ (2) (góc nt và góc tt với dây cung cùng chắn MC⌢MC⌢ )K/h (1),(2) : MPK^=MBC^ (3)MPK^=MBC^ (3)c. lần lượt CM:MPK^=MIP^ (4)MPK^=MIP^ (4)MPI^=MKP^MPI^=MKP^→ΔMIP∼ΔMPK→ΔMIP∼ΔMPKTỉ số đồng dạng :MIMP=MPMKMIMP=MPMK→MP2=MI.MK→MP2=MI.MK→MP3=MI.MK.MP→MP3=MI.MK.MPMI.MK.MPMax↔MPMaxMI.MK.MPMax↔MPMaxTa có: MP+OH≤RMP+OH≤R→MP≤R−OH→MP≤R−OH→MPMax→MPMax bằng R-OH. Khi O,H,M thẳng hàngVậy MI.MK.MPMax=(R−OH)3MI.MK.MPMax=(R−OH)3 khi O,H,M thẳng hàng