K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2022

a) xét tứ giác ANMB có góc ANB = góc AMB lại cùng nhìn cạnh AB nên theo cung chứa góc thì tứ giác ANMB nội tiếp 

b) có tứ giác ANMB nội tiếp nên góc AMN = góc ABN ( 2 góc nội tiếp cùng chắn cung AN của đường tròn (ANMB)

c) ta có tam giác AMC vuông tại M 

góc C = 30 độ thì góc MAC = 60 độ và là góc nội tiếp chắn cung MN 

=> góc MAC = 1/2 số đo cung MN 

=> số đo cung MN = 2.góc MAC = 2.60 = 120 độ 

vậy cung MN = 120 độ 

a: góc ABI=1/2*sđ cung BI

góc ACI=1/2*sđ cung CI

=>sđ cung BI=sđ cung CI

=>BI=CI

mà OB=OC

nên OI là trung trực của BC

=>OI vuông góc BC tại M là trung điểm của BC

b: OI vuông góc BC

AH vuông góc CB

=>AH//OI

=>góc HAI=góc OIA=góc OAI

=>AI làphân giác của góc OAH

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.a. chứng minh tứ giác AMHN , BCMN nội tiếp.b. Tính độ dài cung nhỏ ACc. chứng minh đường thẳng AO vuông góc MN2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cma....
Đọc tiếp

1. cho tam giác ABC nhọn, góc B = 70 độ nội tiếp đường tròn ( 0; 9 cm). Vẽ hai đường cao BM và CN cắt nhau tại H.

a. chứng minh tứ giác AMHN , BCMN nội tiếp.

b. Tính độ dài cung nhỏ AC

c. chứng minh đường thẳng AO vuông góc MN

2. từ 1 điểm A nằm ngoài đường tròn ( 0 ; 6 cm) vẽ hai tiếp tuyến AB, AC với đường tròn ( BC thuộc đường tròn tâm O) và cát tuyến AMN của đường tròn tâm O sao cho MN = 6cm

a. Chứng minh tứ giác ABOC nội tiếp

b. tính độ dài đoạn thẳng AB biết AO= 10cm

c. Gọi H là trung điểm của đoạn thẳng MN, chứng minh rằng góc AHB = góc AOB

3. từ 1 điểm H nằm ngoài đường tròn tâm O vẽ 2 tiếp tuyến MP, MN ( N, P thuộc đường tròn tâm O) và cát tuyến MAB ( A, B thuộc đường tròn tâm O). Chứng minh tư giác MPON nội tiếp 1 đường

ai giúp mình giải với mình cảm ơn nhiều

0
3 tháng 4 2020

A B C O H F E M N

a) từ đề bài ta có:

\(HE\perp AB,HF\perp AC\Rightarrow\widehat{AEH}+\widehat{AFH}=90^O+90^O=180^O\)

 \(\Rightarrow AEHF\)  nội tiếp

b) từ câu a\(\rightarrow\widehat{HFE}=\widehat{HAE}=\widehat{HAB}\)   

\(\Rightarrow\widehat{ABC}+\widehat{HFE}=\widehat{ABC}+\widehat{BAH}=90^O\) 

c)    Ta có : AEHF nội tiếp  

\(\Rightarrow\widehat{AEF}=\widehat{AHF}=\widehat{ACB}\left(+\widehat{FHC}=90^O\right)\)

→EFCB nội tiếp

\(\Rightarrow\widehat{BEC}=\widehat{BFC}\)

\(\Rightarrow\widehat{BEC}-90^O=\widehat{BFC}-90^O\)

\(\Rightarrow\widehat{HEC}=\widehat{HFB}\)

→EFNM nội tiếp

\(\Rightarrow\widehat{ENM}=\widehat{EFB}=\widehat{ECB}\)

\(\Rightarrow MN//BC\)