Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: góc ABI=1/2*sđ cung BI
góc ACI=1/2*sđ cung CI
=>sđ cung BI=sđ cung CI
=>BI=CI
mà OB=OC
nên OI là trung trực của BC
=>OI vuông góc BC tại M là trung điểm của BC
b: OI vuông góc BC
AH vuông góc CB
=>AH//OI
=>góc HAI=góc OIA=góc OAI
=>AI làphân giác của góc OAH
A B C O H F E M N
a) từ đề bài ta có:
\(HE\perp AB,HF\perp AC\Rightarrow\widehat{AEH}+\widehat{AFH}=90^O+90^O=180^O\)
\(\Rightarrow AEHF\) nội tiếp
b) từ câu a\(\rightarrow\widehat{HFE}=\widehat{HAE}=\widehat{HAB}\)
\(\Rightarrow\widehat{ABC}+\widehat{HFE}=\widehat{ABC}+\widehat{BAH}=90^O\)
c) Ta có : AEHF nội tiếp
\(\Rightarrow\widehat{AEF}=\widehat{AHF}=\widehat{ACB}\left(+\widehat{FHC}=90^O\right)\)
→EFCB nội tiếp
\(\Rightarrow\widehat{BEC}=\widehat{BFC}\)
\(\Rightarrow\widehat{BEC}-90^O=\widehat{BFC}-90^O\)
\(\Rightarrow\widehat{HEC}=\widehat{HFB}\)
→EFNM nội tiếp
\(\Rightarrow\widehat{ENM}=\widehat{EFB}=\widehat{ECB}\)
\(\Rightarrow MN//BC\)
a) xét tứ giác ANMB có góc ANB = góc AMB lại cùng nhìn cạnh AB nên theo cung chứa góc thì tứ giác ANMB nội tiếp
b) có tứ giác ANMB nội tiếp nên góc AMN = góc ABN ( 2 góc nội tiếp cùng chắn cung AN của đường tròn (ANMB)
c) ta có tam giác AMC vuông tại M
góc C = 30 độ thì góc MAC = 60 độ và là góc nội tiếp chắn cung MN
=> góc MAC = 1/2 số đo cung MN
=> số đo cung MN = 2.góc MAC = 2.60 = 120 độ
vậy cung MN = 120 độ