Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Link ảnh: file:///C:/Users/THAOCAT/Pictures/Screenshots/Screenshot%20(1222).png
a) Gọi U là giao điểm của AD và BM
Dễ có: \(\widehat{ACB}=\widehat{ADB}=90^0\)(các góc nội tiếp chắn nửa đường tròn) hay \(\Delta ACU\)vuông tại C
và \(\Delta ABU\)cân tại B (có BD vừa là đường cao vừa là phân giác) => D là trung điểm của AU
\(\Delta ACU\)vuông tại C có CD là trung tuyến (cmt) nên CD = AD => \(\widehat{CAD}=\widehat{ABD}\)(góc nội tiếp chắn các cung bằng nhau)
b) \(\Delta ABU\)có ID là đường trung bình nên ID // BU hay IK // BM
\(\Delta ABM\)có I là trung điểm của AB, IK // BM nên K là trung điểm của AM
\(\Delta ACM\)vuông tại C có CK là trung tuyến nên \(CK=\frac{1}{2}AM\)(đpcm)
c) Ta có: \(AC+BC\le\sqrt{2\left(AC^2+BC^2\right)}=\sqrt{2AB^2}=2\sqrt{2}R\)
\(\Rightarrow AB+AC+BC\le\left(2\sqrt{2}+2\right)R\)
Vậy chu vi tam giác ABC lớn nhất bằng \(\left(2\sqrt{2}+2\right)R\)đạt được khi AC = BC hay AB = AM = 2R
![](https://rs.olm.vn/images/avt/0.png?1311)
a) M,N thuộc đường tròn đường kính BC=> Tam giác BMC và tam giác BNC vuông tại M,N
Mà \(\widehat{MAN}=45\Rightarrow\)Tam giác MAC và tam giác NAB vuông cân tại M,N
Khi đó: \(\hept{\begin{cases}OA=OC\\MA=MC\end{cases}\Rightarrow}\)OM là đường trung trực của AC \(\Rightarrow OM\perp AC\)
\(\hept{\begin{cases}OA=OB\\NA=NB\end{cases}\Rightarrow}\)ON là đường trung trực của AB \(\Rightarrow ON\perp AB\)
Vậy O là trực tâm tam giác ABC.
b) \(B,C\in\left(O,OA\right)\Rightarrow OB=OC\)
O thuộc đường tròn đường kính BC=> Tam giác OBC vuông cân tại O \(\Rightarrow\widehat{OBC}=45\)
Tam giác NBA vuông cân tại N \(\Rightarrow\widehat{NBA}=45\)
Vì \(\widehat{OBC}=\widehat{NBA}\) là các góc tại B chắn các cung nhỏ OC và MN của đường tròn đường kính BC \(\Rightarrow MN=OC=BCcos45=\frac{BC}{\sqrt{2}}\)
c) \(\frac{S_{AMN}}{S_{ABC}}=\frac{\frac{1}{2}AM.AN.sin\widehat{MAN}}{\frac{1}{2}AB.AC.sin\widehat{BAC}}=\left(\frac{AM}{AC}\right)\left(\frac{AN}{AB}\right)=cos\widehat{MAN}.cos\widehat{BAC}=cos^245=\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
O A B C E I D F
a) xét tứ giác ABOC, ta có:
\(\widehat{OBA}=90^O\)
\(\widehat{OCA}=90^O\)
=> \(\widehat{OBA}+\widehat{OCA}=180^O
\)
=> tứ giác ABOC nội tiếp
b) Xét tam giác OBC, ta có:
OB = OC = R
=> tam giác OBC cân tại O
=> OE vừa là đường cao vừa là đường phân giác dường phân giác góc O.
=> BE = CE
=> OA vuông góc BC ( đường kính đi qua trung điểm của dây cung thì vuông góc với dây đó)
Xét tam giác AOB và tam giác ABE, ta có:
góc A chung
góc OBA = BEA = 90o
=>AOB đồng dạng ABE
=> \(\frac{AB}{AE}=\frac{OB}{BE}\)
=>AB.BE = OB.AE
câu c và d cậu tự làm nhé tớ ko giải dc xin lỗi cậu nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Xin lỗi bạn nha ! Vì lỗi nên mình không vẽ được hình cho bạn ,có j bạn tự vẽ nha !!!
Bài giải
a) AB là tiếp tuyến tại A của ( C)
=> \(\widehat{BAF}=\widehat{AEF}\)
Xét \(\Delta ABF\)và \(\Delta EBA\)có :
\(\hept{\begin{cases}\widehat{ABE}chung\\\widehat{BAF}=\widehat{BEA}\end{cases}\Rightarrow\Delta ABF}\infty\Delta EBA\left(g-g\right)\)
\(\Rightarrow\frac{AB}{BE}=\frac{BF}{AB}\Rightarrow AB^2=BE.BF\)
Xét \(\Delta ABC\) vuông tại A có đường cao AH .
=> AB2 =BH . BC
=> BH . BC = BE . BF ( =AB2 )
Xét \(\Delta BHF\)và \(\Delta BEC\)có :
\(\frac{BH}{BE}=\frac{BF}{BC}\)
\(\widehat{CBE}\)chung
=> \(\Delta BHF\infty\Delta BEC\left(c-g-c\right)\)
=> \(\widehat{BHF}=\widehat{BEC}\)
*) \(\widehat{BHF}+\widehat{FHC}=\widehat{BEC}+\widehat{FHC}\)
\(\Leftrightarrow\widehat{FEC}+\widehat{FHC}=\widehat{BHC}=180^O\)
=> EFHC là tứ giác nội tiếp ( có tổng 2 góc đối =180 o
b) EFHC là tứ giác nội tiếp
=> \(\widehat{EHC}=\widehat{EFC}\)( cùng chắn góc EC )
\(\widehat{FEC}=\widehat{BHF}\)( c/ m cân A )
Mà \(\widehat{FEC}=\widehat{EFC}\)( \(\Delta ECF\)cân ở C )
=> \(\widehat{EHC}=\widehat{BHF}\)
=> 90O \(-\widehat{EHC}=90^O-\widehat{BHF}\)
<=> \(\widehat{EHD}=\widehat{FHD}\)
=> HD là phân giác góc EHF